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This paper presents the methodology for computing the correct general formulas for the PERT-beta distri-
bution, and how they are used to carry out stochastic project duration simulations using the built-in tools
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1. PERT-Beta Distributions for Monte
Carlo Project Simulation

Although the beta distribution has received much
attention in relation to the PERT methodology since
the appearance of the Malcolm et al. (1959) paper
that proposed it, there has been a great deal of con-
fusion and misunderstanding in the literature about
how to carry out project simulations using the beta
distribution based on the PERT paradigm. One fac-
tor contributing to this situation is that the creators
of the method, and those presenting subsequent clar-
ifications of the PERT rationale such as Clarke (1962)
and Littlefield and Randolph (1987), failed to explain
exactly how a beta distribution is to be selected
for each activity of a project network. Another fac-
tor is the early criticism levied against the method
(see “Picking on Pert” by Grubbs 1962) that falsely
concluded that there were only three beta distribu-
tions meeting the PERT assumptions and hence the
methodology was simply not well founded. Conse-
quently, the correct PERT-beta shape parameter for-
mulas on a general �a� b� interval have not previously
been clearly presented in the OR/MS literature.
In order to rectify this unfortunate situation, we

proceed to the derivation of the correct beta shape
parameter formulas to use when doing a PERT simu-
lation. The traditional PERT formulas give mean and
variance statistics for all activity durations, whereas

the beta functions are generally expressed in terms
of two shape parameters (which are referred to as
alpha (�� and beta (�� in the Excel environment). As
shown below there are closed form transformations
between these two sets of parameters.
For a beta distribution defined on the interval �a� b�

with the parameters �����a� b� one has

MEAN: � = a + �b − a� ∗
(

�

� + �

)
(1)

VARIANCE: 	2 =
(
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� + �
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�
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)(
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Solving for alpha and beta in terms of � and 	2 is facil-
itated by noting that the mean value formula implies
that ��/�� + ��� = ��� − a�/�b − a�� and ��/�� + ��� =
��b − ��/�b − a��. Putting these into the variance for-
mula enables one to compute a quantity representing
alpha plus beta:

�� + �� =
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− 1 (3)

This is then split into the two parts alpha and beta
according to

� =
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(5)

Equations (3), (4), and (5) are generalizations of those
given for parameter estimation by the method of
matched moments in the online Engineering Statistics
Handbook (see Davis 2008).
Letting �a�m�b� be the three PERT times assumed

as given data, the usual PERT formulas give PERT−
Mean = � = �a + 4m + b�/6 and PERT − Variance =
	2 = �b − a�2/36. When these mean and variance for-
mulas are substituted into formulas (3), (4), and (5)
above, one gets the unique beta distribution param-
eters for each project activity, which indeed has the
PERT mean and PERT variance as its own mean and
variance. Rewriting in terms of �a�m�b�, here is what
you get after doing the algebra (for the record, in the
classroom the unprimed equations are simpler):

�� + �� = 4+ 16
(

�m − a��b − m�

�b − a�2

)
(3’)

� =
(

b + 4m − 5a
6�b − a�

)
�� + �� or

� =
(
2�b + 4m − 5a�
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)[
1+ 4

(
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�b − a�2

)] (4’)

� =
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)
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b + 4m − 5a

)
� = �� + �� − � or

� =
(
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We refer to beta distributions defined in this fashion
as PERT-beta distributions (see Regnier 2005) because
they are beta distributions that exhibit means and
variances as specified by the PERT mean and vari-
ance formulas. This is an infinite but proper subset
of the beta family, because it turns out that from (3′)
one obtains 4 ≤ � + � ≤ 8 and the maximum value is
achieved only for the symmetric case in which m =
�a+b�/2 and therefore � = � = 4. A pictorial represen-
tation of the PERT-beta family is shown in Figure 1,
which was obtained by letting m vary from 0 to 10
with a = 0 and b = 10. The points where m assumes
integer values from 1 to 9 are labeled for compari-
son with Figure 2. Points above the 45 degree line are
skewed right �� > �� and those below are skewed left
�� > ��. The symmetric case in which � = � = 4 is on
the 45 degree line.
Figure 2 shows various density function shapes that

occur as m varies from 1 to 9 when a is 0 and b is 10.

Figure 1 Locus of PERT-Beta Shape Parameters Mode m Varies from
1 to 9 in �a = 0�m�b = 10�
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One finds that �+� is maximized with value 8 when
the distribution is symmetric �m = 5� and the sum
decreases toward four as m moves farther away from
the midpoint of the interval. A sum of 4 results when
m = 0 or m = 10. A lateral shift, or a rescaling of the
width of the interval, or a combination of both, have
no effect on �, �, or � + �. Any such affine transfor-
mation of a beta distribution leaves its shape, and its
shape parameters, unchanged. The family is seen to
consist only of unimodal distributions that range from
extremely skewed to the left to extremely skewed to
the right. Between the extremes there are a continuum
of shapes with varying amounts of skew, and a sym-
metric case in the middle when m = 5 and � = � = 4.
The means vary from 10(1/6) to 10(5/6) in this exam-
ple. The family is therefore seen to be quite flexible
and appropriate for use in the PERT context (see Fig-
ure 2).
With these shape parameter formulas (4 and 5, or

4′ and 5′), one can generate random activity durations

Figure 2 PERT-Beta Densities for m = 1�2�3�4�5�6�7�8�9 in
�a = 0�m�b = 10�
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Table 1 Example Project Data for Simulation Analysis

Activities Pred ai mi bi Mean Variance Alpha Beta Min Max

A 3 6 9 6 1 4 4 3 9
B 2 5 6 4�6667 0�4444 4�6667 2�3333 2 6
C B 2 3 7 3�5 0�6944 1�968 4�592 2 7
D A, C 1 3 3 2�6667 0�1111 3�3333 0�6667 1 3
E D 0 7 8 6 1�7778 4�3125 1�4375 0 8
F C 1 2 10 3�1667 2�25 1�3434 4�2369 1 10
G F 3 4 12 5�1667 2�25 1�3434 4�2369 3 12
H F 1 2 15 4 5�4444 1�0845 3�9767 1 15
I B 5 10 30 12�5 17�3611 1�968 4�592 5 30
J E, G, H 1 3 4 2�8333 0�25 4�6173 2�9383 1 4
EOP I, J 0 0 0

using the standard uniform random number genera-
tor RAND( ) and the percentile point function call =
BETAINV(RAND( ), �, �, a, b) in EXCEL (variations
for the other add-ins will be shown in §4). The simu-
lation results for each activity will have statistics that
converge to the theoretical (PERT) parameter values
as the sample size becomes larger and larger.
With the precise specification of the beta distribu-

tion to use for each activity given above, the Monte
Carlo procedure for analyzing the distribution of
project duration given PERT-beta distributed activity
times can be specified in terms of a combination of
the critical path method (CPM) implementation aug-
mented with the appropriate function calls for gener-
ating random beta distributed activity durations hav-
ing the desired mean and variance properties. The
Data Table command can then be used for generating
and tabulating multiple simulation trials that can be
analyzed statistically using the Data Analysis ToolPak
after the fact.
Heretofore the appropriate beta shape parame-

ter formulas that make this possible ((3), (4), and
(5)) have not been presented in OR/MS textbooks.
One hopes that future textbook treatments will show
these formulas and encourage students to use them.
They should also be offered in the commercial soft-
ware products for OR/MS applications, such as from
Palisade, Frontline Systems, and Decisioneering.

2. Example Simulation Results Using
PERT-Beta Distributions

To see how this spreadsheet implementation works
in practice we have simulated a modification of the
example presented in Ragsdale (2003) using 64,000
trials in order to get a quite accurate result. The
modifications involved providing min and max times
for each activity as required by PERT, and increas-
ing the time estimate data for a few project activities
in order to make several different paths have very
similar mean path durations. This implies that dur-
ing the simulation there is meaningful “competition”

between them for longest path. The modified project
data, associated precedence structure, and secondary
parameters are shown in Table 1.
The Mean and Variance columns are obtained using

the standard PERT formulas, and the alpha and beta
shape parameters are obtained using the formulas (4)
and (5), applied once in each row, for each activity.
The EOP row is for the End of Project milestone node
that denotes the end of the project when there would
otherwise be multiple loose ends. The two results
saved during the simulation are computed in this row
(see Davis 2006).
In this case, using the CPM with mean durations,

the PERT project critical path is found to be BCDEJ
with mean duration 19.67. It has a critical path vari-
ance of 3.28 and a critical path standard deviation of
1.81 days. Under the PERT approximation, these val-
ues are taken as applicable to the total project dura-
tion, whereas in fact they pertain only to the BCDEJ
critical path.
Only activity A is symmetric (with alpha and beta

equal to 4) whereas all the other activities are skewed
right or left with various degrees of skewness. The
last four columns of the table are the beta distribu-
tion parameters for the activity durations given in the
sequence that they are expected in the EXCEL built-
in functions, BETADIST and BETAINV. Using the
RAND( ) function for a uniformly distributed cumu-
lative probability value (between zero and one) as the
first argument in the BETAINV function call, one can
then generate beta distributed activity durations for
each of the activities and parameter sets listed above
with the function call

= BETAINV(RAND( )� alpha� beta� a� b�


Application of the standard forward and backward
pass recursion formulas (given in Davis 2006) give
rise to a set of additional columns for which sim-
ulation results can be tabulated using the Data
Table command. For sample random activity duration
times, a CPM table is shown as Table 2. The critical
path in this case is seen to be ADEJ, and the duration
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Table 2 CPM Computations Based on Randomized Activity Durations

Activity RANDDur ES EF LF LS Slack Critical?

A 7�4681 0 7�4681 0 7�4681 0 A
B 3�7166 0 3�7166 0�4965 4�2131 0�4965
C 2�0266 3�7166 5�7432 4�2131 6�2397 0�4965
D 2�5291 7�4681 9�9971 7�4681 9�9971 0 D
E 6�0266 9�9971 16�0237 9�9971 16�0237 0 E
F 2�9149 5�7432 8�6581 6�2397 9�1546 0�4965
G 6�8691 8�6581 15�5272 9�1546 16�0237 0�4965
H 4�3728 8�6581 13�0310 11�6509 16�0237 2�9928
I 12�5475 3�7166 16�2641 6�9681 19�5156 3�2515
J 3�4919 16�0237 19�5156 16�0237 19�5156 0 J
EOP 0 19�5156 19�5156 19�5156 19�5156 0 ADEJ

Table 3 Descriptive Statistics for PERT-Beta Simulation

Project duration stats Continued

Mean 21�5412
Standard error 0�0093 Range 20�3480
Median 21�2630 Minimum 13�8212
Mode 20�3930 Maximum 34�1692
Standard deviation 2�3445 Sum 1�378�637�065
Sample variance 5�4965 Count 64�000
Kurtosis 0�9458 Largest(16,000) 22�8261
Skewness 0�7070 Smallest(16,000) 19�9628

is at the base of the EF column. These two highlighted
results in the EOP row will change from one iteration
to the next as the random activity times change, and
will be saved in two columns of a Data Table dur-

Figure 3 Histogram of Project Duration. Mean= 21.5412; Standard Deviation= 2.3445
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ing the simulation process so as to enable statistical
analysis of the results.
For this study, a Monte Carlo simulation in Excel

was run having 64,000 simulation trials so that
all mean, variance and skew estimates would be
quite accurate. The Data Analysis Toolpak was then
invoked to get the Descriptive Statistics Report and
the Histogram Chart shown in Table 3 and Figure 3.
Due to “competition” between the paths, simulated

mean duration is almost two days longer than the
PERT project mean result, and the simulation variance
is rather larger than the PERT project variance result.
The skewness is significantly to the right.
By recording the critical path name computed in

the lower right corner of the CPM table along with
its duration from the bottom of the EF column, one
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Table 4 Path Probabilities

Path RelFreq (%)

A-D-E-J 2�8766
B-C-D-E-J 34�5078
B-C-F-G-J 26�1500
B-C-F-H-J 15�8734
B-I 20�5922

Table 5 Percentile Comparisons

Percentile 90% 95% 99%

PERT normal 21�9869 22�6446 23�8784
PERT-beta simulation 24�6498 25�8890 28�3841

can construct a relative frequency tabulation for the
various paths that are critical on the various simu-
lation trials. Table 4 shows the results obtained for
this experiment. As can be seen, all paths are critical
for some random samples, but they are not equally
likely to be critical. Interestingly, the PERT critical
path BCDEJ occurs only about 1/3 of the time. Hence
something other than BCDEJ is critical about 2/3 of
the time.
Finally, the first quartile of the simulation (19.96) is

larger than the PERT mean duration estimate, show-
ing the significant extent to which the project duration
distribution has been “shifted to the right” by the
durations of other paths.
The distribution for total project duration, based

on the interaction of all five project paths, assumes a
shape that looks very much like a beta distribution
with a substantial right skew. The right skew derives

Figure 4 CDF Comparison: PERT Normal vs. PERT-Beta Simulation
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from the skew of the individual activity durations and
the effect of the maximum value computations for the
early start (ES) times throughout the project. The path
probability table shows that each of the paths is crit-
ical a significant portion of the time, but some paths
are much more likely than others. The right skew of
the simulation result implies that percentiles for per-
cents close to 100 will lie further to the right (i.e. be
larger) than for the symmetric PERT approximation.
To emphasize this point, consider the comparison in
Table 5. For this example, the 90th percentile of the
simulation result is larger than the 99th percentile of
the PERT normal approximation.
Another way of viewing the comparison is by

means of the plots of cumulative percent from the
simulation result and cumulative probability under
the normal PERT approximation. This CDF compari-
son is shown in Figure 4.
Over the range where there is a visible difference

between the curves, the normal PERT approximation
lies above and to the left of the simulation CDF. This
means that the normal PERT approximation consis-
tently underestimates the time to a given percentile,
and over estimates the probability for any given time.
In other words, it gives an optimistic estimate, espe-
cially above the means where questions are most often
asked.

3. Fitting a Beta Distribution
to Project Duration Statistics

Over the 15 years or so that I have taught PERT sim-
ulation, I have noticed that the project duration dis-
tribution almost always has a noticeable amount of
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Table 6 Beta-fit for Project Duration CDF

Beta-fit Parameters

alpha_fit 6�3498 min_fit 13�8212
beta_fit 10�3867 max_fit 34�1692

skew, one way or the other. So as an extra credit
assignment, I ask students to fit a beta distribu-
tion to their simulation results. Using the method of
moments, they can use the mean and variance results
and the min and max times observed during the sim-
ulation as a basis for computing a preliminary beta
fit for the simulation result. Quite simply, it is the
beta on the given range that matches the first two
moment statistics given in the Descriptive Statistics
Report shown in Table 3. The parameter estimates
for the fitted beta obtained in this way are shown in
Table 6.
The CDF of this fitted beta and the cumulative per-

centage of the simulation result are then plotted on
the same axes to get a measure of how well the fitted
beta matches the results from the simulation across
the entire range of project durations observed. As is
seen in Figure 5, the fit is very close, with the fitted
beta points lying very close to the cumulative per-
centage points across the entire range of the distribu-
tion. This leads to the conjecture that perhaps all of
the early finish time distributions are closely approxi-
mated by beta distributions. For the present example,
that turns out to be the case, although we do not take
the space to show all the CDF plots that indicate this
is so.
The “gap” between these two curves can be

reduced further by letting both min and max param-
eters go free and optimizing all four beta distribution
parameters to minimize the root mean squared (RMS)
deviation of the fitted fractiles in comparison with the
fractile locations of the simulation result on some grid

Figure 5 CDF Comparison: PERT-Beta Simulation vs. Simple Beta-fit
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of fractiles (1% to 99% was used in this study with
increments of 1%). This is done using the nonlinear
optimizer provided by the SOLVER add-in subject to
the constraints that the mean and standard deviation
of the beta-fit match the statistics for the simulation
results. The fitting procedure could therefore be called
moment-constrained fractile fitting. The result of this
refinement is shown in Figure 6.
Although not perfect, the beta distribution fit nev-

ertheless matches the simulation result to an error tol-
erance that would be satisfactory for most practical
applications.
The significance of this result is two fold. First it

means that probability and percentile questions posed
about project duration can be readily answered using
the beta-fit for the PERT-beta simulation results, rather
than using the histogram of the simulation results
directly. In particular, the probability of not completing
the project by any given target time “t” is estimated by

1−BETADIST�t�alpha_fit�beta_fit�min_fit�max_fit��

and the time required to achieve a probability “p” of
timely completion is estimated by

BETAINV�p�alpha_fit�beta_fit�min_fit�max_fit)


Secondly, and more importantly, it suggests the idea
of developing beta distributions for all of the early
finish (EF) times during the forward pass in an analyt-
ical way, so that the Monte Carlo simulation process
can be omitted altogether. This approach to project
duration analysis is given in a separate paper to be
presented elsewhere.

4. Parametric Variations for Add-Ins
The simulation example reported here was repeated
four more times with the Crystal Ball, @Risk, Risk-
Solver, and PopTools add-ins. The internal consis-
tency between the results is a welcome indication that
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Figure 6 CDF Comparison: PERT-Beta Simulation vs. RMS Beta-fit

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

80.00

90.00

100.00

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36

C
um

ul
at

iv
e 

 d
is

tr
ib

ut
io

n 
 fu

nc
tio

n 
(%

)

Project duration

PERT simulation
RMS beta-fit

all implementations have been carried out correctly.
However, the implementation details vary slightly
due to differences in the way that the beta distribu-
tion has been scaled and parameterized. For clarity,
we spell out these implementation differences here in
terms of activity C from Table 1 having �a�m�b� =
�2�3�7� and (alpha, beta)= �1
968�4
592�.

Crystal Ball (Decisioneering)
First, the Crystal Ball implementation assumes that
the min location parameter “a” is zero, and uses a
“scale” parameter to represent our �b − a� interval
width. Hence the output of their random beta vari-
ate must by “shifted” to the right by “a” to get the
desired activity time. This is done by simple addi-
tion of a to the random beta variate. So for activity C,
scale would be 7−2= 5 and the random activity time
would be= 2+CB.beta�1
968�4
592�5�.

@RISK and RISKOptimizer (Palisade)
Second, the @Risk implementation for the Beta dis-
tribution has several different forms (RISKOptimizer
uses the distributions from @RISK so the same com-
ments apply to both). A beta on the unit interval �0�1�
is provided by the RiskBeta�alpha�beta� function. The
beta on a general �Amin�Bmax� interval is provided
by the RiskBetaGeneral�alpha�beta�Amin�Bmax�
function. This latter is the one to use, with alpha
and beta derived from the PERT-beta formulas given
above. It uses all four of the parameters used
in the Excel implementation, in the same order,
and for the example at hand would appear as =
RiskBetaGeneral�1
968�4
592�2�7�.
In addition, there is a RiskBetaSubj distribution

based on mean, mode, min, and max. They also have
a RiskPert distribution, but it is not for the PERT-beta
distribution developed here. It is based on matching

mean and mode instead of mean and variance (see
Vose 1996), and hence is not correctly named since it
does not supply the correct variance. Their RiskPert
distribution was not used in this study, as a result,
and is not recommended for PERT simulation stud-
ies. (I will attempt to get the implementation of the
RiskPert distribution changed so that it conforms to
the PERT-beta formulas given here, but at the present
time RiskBetaGeneral is the function to use to get true
PERT-beta distributions.)

RiskSolver (Frontline Systems)
The RiskSolver package provides the same four
options as the RiskOptimizer does, with slightly dif-
ferent names. For the unit interval, its PsiBeta�alpha1�
alpha2� where alpha1 takes the place of alpha, and
alpha2 takes the place of beta; the general �a� b�
interval is PsiBetaGen�alpha1�alpha2� a� b�. They also
supply a PsiBetaSubj�min�mode�mean�max� func-
tion for the betas that are specified in terms of
mode and mean instead of mean and variance,
and also a PsiPert�min�mode�max� function which
matches PERT mean value, but not PERT variance.
Hence, again, to obtain the PERT-beta distributions
at the present time, one must skip over the PsiPert
function and use PsiBetaGen with the arguments
obtained using the PERT-beta formulas given here.
Hence for activity C in our example one would use
PsiBetaGen�1
968�4
592�2�7�.
One hopes that in time both the RiskPert and

PsiPert functions will give PERT-beta distributions
rather than the betaPERT distributions introduced by
Vose (1996). Since Vose’s distributions are derived by
matching mean and mode instead of mean and vari-
ance, in my view they are an aberration away from
the correct formulas. The variance of the triangular
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distribution INCREASES as M moves away from the
middle towards the extremes, whereas the variance of
the betaPERT DECREASES towards the extremes. The
PERT-beta distributions have CONSTANT variance as
M moves from one extreme to the other, and that is
the way it should be, in my opinion, if one is going to
do project simulation based on the PERT paradigm.

PopTools
The PopTools beta function is unusual in that it does
not require the shape parameters customary in most
other packages. It also assumes the interval of uncer-
tainty is the unit interval �0�1�. The arguments it does
require are the mean and standard deviation of the dis-
tribution, given that it is on the �0�1� interval. Hence
for the present application, the beta distribution for
each activity must be mapped to the �0�1� interval first
to get the corresponding mean and standard deviation
to use as arguments to this function; then the output
of the random number generator needs to be mapped
back to the �a� b� interval for use in the simulation.
This is accomplished as follows. The arguments to the
dBetaDev function are given by

�′
i = ��i − ai�/�bi − ai� and

	 ′
i =

√
	2

i

�bi − ai�
2

= 	i

�bi − ai�
= 1/6


(6)

The random activity time is then given by

ai + �bi − ai� ∗ dBetaDev��′
i�	 ′

i �
 (7)

For activity C, �’ would be �3
5− 2�/5 or 0.3 and 	 ′ =
�5/6�/5 = 1/6. Hence the random time for this activ-
ity would be = 2 + 5 ∗ dBetaDev�0
3�1/6�. In fact, all
PERT-beta distributions have a standard deviation of
1/6 when normalized to the unit interval, and that is
the major part of what makes them PERT-beta (the rest
of it being that 1/6≤ �′ ≤ 5/6�.

5. Results Summary
A comparison of the simulation results obtained using
the five beta functions included in this study is shown
in Table 7. This consistency of results tends to reinforce

Table 7 Simulation Results Comparison

Percentiles

Method Mean StDev Skew 90% 95% 99%

Excel alone 21�5412 2�3445 0�7070 24�6498 25�8890 28�38411
Crystal Ball 21�5545 2�3605 0�7125 24�7012 25�9143 28�40154
@Risk 21�5531 2�3491 0�7236 24�6509 25�9446 28�49812
RiskSolver 21�5607 2�3450 0�7208 24�6513 25�9424 28�43702
PopTools 21�5612 2�3504 0�7045 24�7054 25�9377 28�45213

Table 8 RMS of Relative Errors after 64,000 Trials

Method Error in means Error in standard deviations

Excel (alone) 0�000627 0�000378
Crystal Ball 0�000400 0�000481
@Risk 0�000000147921 0�00000166663
RiskSolver 0�000471 0�000385
PopTools 0�000743 0�000417

the prior notion that all reported implementations are
valid and equivalent.
Another consistency check was done by keeping

statistics also on the individual activity durations
which were selected randomly throughout the simu-
lation. Theoretically, the mean of the simulated dura-
tions for an activity should approach the mean of
the PERT-beta distribution being used for the activity
(i.e. the PERT mean for the activity), and the sam-
ple variance and standard deviation of the simulated
durations should approach the PERT variance and
standard deviation of the activity. Since the intervals of
uncertainty vary across the activities, the tabulation in
Table 8 is in terms of “relative error” in which the indi-
cated difference is divided by the associated interval
width. An RMS of the relative errors was computed
across the ten input quantities in each case.
The small size of the @Risk errors was due to the

Latin Hypercube sampling procedure used, in com-
parison with the other methods based on simple
Monte Carlo sampling. Since the standard devia-
tion of all PERT-beta distributions on the unit inter-
val is 1/6 and there were 64,000 samples taken, the
relative standard error of the sample mean should
be (1/6)/SQRT(64,000) according to theory, which is
0.0006588. Since there is only one RMS reported that
is just slightly larger than this, all others being less,
we again find that the computational results reinforce
the prior notion that all implementations are correctly
done.
Since the RiskPert distribution (supplied by @Risk)

and the PsiPert distribution (supplied by RiskSolver)
have standard deviations that deviate from the
required 1/6 ∗ �b − a�, they were not used in this sim-
ulation experiment. In addition, I believe that they
should not be used for PERT simulations until they
have been changed to an implementation of the PERT-
beta distribution. For the example reported here, we
used the RiskBetaGeneral distribution (and PsiBeta-
Gen distribution) with shape parameters determined
by the PERT-beta formulas given in this paper, and
we recommend that the reader do the same until
the RiskPert and PsiPert implementations have been
corrected.

6. Conclusions
The principal analytical contribution of this paper is
to show exactly how to select the beta distribution for
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each activity in a project model, based on the PERT
paradigm for activity time modeling. We have shown
in fact that there is a UNIQUE beta that conforms to
the Min, Max, PERT-mean, and PERT-variance param-
eters for each activity, and that the family of all such
PERT-beta distributions is comprised of unimodal dis-
tributions that includes a symmetric case as well as
distributions that are skewed right or skewed left with
various degrees of skewness. Contrary to the false
impression created in Grubbs (1962), the PERT-beta
family is quite flexible and quite suitable for the pur-
pose for which it was created. It is unclear why the rel-
evant formulas have not been presented previously (in
the general form given here), but it is also quite clear
that the formulas presented here are correct. We hope
that Palisade, Frontline Systems, and Decisioneering
will soon provide PERT distributions based on these
formulas rather than the ones they are now using.
My classroom use of the methodology presented in

this paper has led to some other conclusions, as well.
The first two of these have been noted by other authors
earlier on (see Schonberger 1981) and are reiterated
here for the sake of completeness.
1. The simple PERT approximation (without sim-

ulation) contains a systematic bias that makes it a
“rough first cut” approximation that should not be
relied upon in practice. It systematically underesti-
mates the mean duration of the project, and system-
atically overestimates the probability of completion at
any given time. Hence it gives a “rosy” or optimistic
view of the situation that should not be taken liter-
ally. The degree to which the simulation CDF will be
shifted to the right relative to the PERT normal CDF
depends on the specific project structure and activity
duration distributions, but the example results shown
in Figure 4 and Table 5 are enough to see that the
results from simulation may be significantly different
than what is indicated by PERT without simulation.
2. The Central Limit Theorem, which is often

invoked in relation to individual paths of a project net-
work, is not applicable to the total project duration
(except in two special cases, i.e. linear project struc-
ture or dominant critical path). Because of the inter-
vention of the MAX function for computation of each
and every EST, there are no long sums of random vari-
ables involved in the definition of the project duration,
except as arguments of a MAX function. And the MAX
of a set of random variables is usually skewed, even
when the arguments are symmetric. Therefore (except
in the two special cases) there is no a priori reason to
expect that project duration distributions will tend to
be either symmetric or normal in shape.
3. Simulations based on the beta distribution may

be carried out in Excel without use of simulation
add-ins. The results obtained with simulation add-ins,

at least for those considered in this paper, given suffi-
ciently large simulation trial counts, will be very much
the same as what can be achieved in Excel without
the add-ins. While there may be run time and conve-
nience advantages for the commercial add-ins, it is not
necessary for students to buy such software in order
to do project duration simulation in the spreadsheet.
Due to the many unfamiliar Excel details involved in
the process, however, I find it extremely helpful to
prepare demonstration videos using SnagIt that show
students the procedures to follow. These can be con-
verted to flash movies that students can view through
the browser (see Davis 2007).
4. In practice, skewness to a degree clearly visible

in the simulation histogram is the rule, not the excep-
tion. Moreover, project duration distributions are usu-
ally well described by fitted beta distributions, and are
almost never symmetric. One can even use the fitted
betas as a means of answering probability and per-
centile questions about project duration, rather than
the simulation result itself. I sometimes use an expres-
sion “beta in � beta out” to describe this situation.
5. Schonberger ends his 1981 paper by saying “my

suggestion is that students—future project managers
and staff—should be schooled in the network simula-
tion and project lateness phenomena, but that project
managers may employ the insights gained without the
need for actually conducting expensive simulations
of large project networks.” Obviously, times have
changed. With the enormous growth in computer
power and personal computer software sophistication,
it is no longer advisable to omit the simulation pro-
cess. Except for extremely large projects, it is no longer
too expensive or too time consuming to actually carry
out simulations on realistic project networks. We hope
that reading this paper has enhanced your under-
standing of how to do this and what to expect from
your results.
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