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ABSTRACT

MULTIPLICATIVE ERROR REGRESSION TECHNIQUE

by Dr. Shu Ping Hu
Arve R. Sjovold
Tecolote Research, Inc.

A new Multiplicative Unbiased Regression Technique (MURT) has been developed to model
multiplicative error in least-squares regressions. Multiplicative error is an appropriate assumption
when modeling systems in which the dependent random variable ranges over more than an order of
magnitude and errors in the dependent variable are believed to be proportional to the level of the
variable. Previous methods to model multiplicative error have usually depended on log-transforms,
either log-linear regressions or non-linear regressions of the log-transformed dependent variable.
Unfortunately, log-transforms involve transformation bias such that the unit space equation is not
unbiased. MURT involves an iterative, weighted least squares regression that is shown to provide
unbiased percentage error regression results while modeling a multiplicative error. This represents

a significant addition to the regression tool box for cost and systems analysts.



MULTIPLICATIVE ERROR REGRESSION TECHNIQUE

INTRODUCTION

Regression analysis is a powerful tool in scientific investigations. Once an hypothesis has been
developed and appropriate data have been collected, the analyst can resort to regression analysis to
test the validity of his hypothesis. The development of cost estimating relationships (CERs) in cost
analysis represents one such body of scientific investigation. The CER to be developed attempts to
establish the relationship between the cost of a certain class of equipment to parameters describing
its performance or physical characteristics. Most often the costs of the equipment items in the data
set will range over several orders of magnitude. It is this feature of the cost analysis problem that
gives rise to the notion of a multiplicative error, by which we mean that errors in cost are in

proportion to cost.

Simple linear regression involves the process most often referred to as “ordinary least
squares,” or OLS. When using OLS, the assumption is usually made that the distribution of the error
in the dependent variable (i.e., cost) is identical throughout the space. For example, a standard error
of a distribution that is identical throughout the range of the data may be, say $10, such that it would
represent only 1% on a $1000 item, but 100% on a $10 item. Clearly, these quite different
percentage errors do not represent well what we believe to be the case concerning costs. It is more
appropriate in such a case to assume that the percentage errors of the item estimates will be
identically distributed throughout the space. This is what a multiplicative error is supposed to

represent.

When the absolute error (i.e., the dollar error) is identically distributed throughout, the error
is said to be “additive.” The term OLS refers to the particular mathematical optimization technique
used in regression analysis by which the sum of the squares of the estimating errors is minimized. It
is the equivalent of visually fitting a curve through a plot of the data so as to balance the data points
on both sides of the curve. The minimization is said to be “ordinary least squares” if the function

is linear and the error is additive.

For most cost analyses, it will be necessary to assume a multiplicative error just due to the

range of the cost data. In the past, several optimization techniques have been used to model



multiplicative error in studies. One is the use of a log-transform of the cost data. The transformation
may be log-linear, whereby the dependent and independent variables are transformed to logarithms
such that the transformed function to be fit is linear in log-space. When the transformed function
is linear in log-space, OLS can be applied to achieve a multiplicative error. If the equation form is
not log-linear, the log-transform can still be used to model a multiplicative error, but the optimization
will be non-linear least squares. A second technique to model a multiplicative error is by weighted
least squares. The sense of a multiplicative error is created by dividing the normal additive error by
the value of the observed data at each point in the data set. The mathematical optimization is
achieved by weighting each data point (as well as the residual) by the inverse of the observed value
while performing ordinary least squares, or just least squares if the function is not linear in unit space

(this requires a non-linear optimization calculation). Mathematically, the objective is described as

Minimize ¥ [(y; - §)/y, (1)
where
yj = the it observation
y; = the estimate of the i'™ point

Both log-space and weighted least squares have some undesirable properties. Even though
a least-squares optimization in log-space produces an unbiased estimator in log-space, on trans-
formation back to unit space the estimator is no longer unbiased. Weighted least squares can also
be shown to produce a biased estimator. In both cases, the magnitude of the bias is proportional to
the variance about the estimator. However, in the case of the log-space least squares, the magnitude
of the bias can be corrected with a simple factor if one is willing to assume that the errors are

distributed normally in log-space (ordinarily a reasonable assumption.)

Because of these shortcomings, there has been a need to discover a method for modeling
multiplicative error with least squares optimization which produces unbiased estimators. This need
was recognized in the cost analysis community in 1990 by Dr. S. A. Book and Mr. P. H. Young of the

Aerospace Corporation.(l)

Book/Young hypothesized that a multiplicative error can be best defined by dividing the

ordinary unit space error by the predicted value of the cost function in contrast to weighted least



squares, where the unit space error is divided by the observed value of cost for each data point.

Their hypothesis is succinctly stated by
i = f)*e(lo?) 2
where

y; = value of the ith data point
f(x,a) = the function to be fit

x; = avector of the independent variables @ each i
a = a vector of the coefficients to be calibrated by the regression
e(l,oz) = is a multiplicative error distribution with mean of 1 and variance o

For mathematical calculation, the error term can be redefined as
& = (¥ - 1(x)/1(x;2), 3)

which now has a mean of zero with variance ¢2. The optimization objective is to find coefficient

vector a which will minimize the sum of e'iz. -

Book/Young developed an optimization method, referred to as GERM, which performs a
non-linear calculation to find the a which minimizes the sum of squares.(l) It can be stated

mathematically as
Minimize X [(y,-f)/f,]? @
where
¥i is as defined before, and

f, is short for f(x;a).

In effect, the optimization finds the vector set a, which determines the value of the function to be

used in the numerator while simultaneously providing the value used as the weighting parameter in

"GERM stands for General Error Regression Model, a term coined by Book/Young.(D)
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the denominator. The optimization differs from the weighted least squares noted above in that the
predicted value of the function appears as the weighting parameter rather than the observed value
for each data point. Intuitively, this should represent a correct weighting, given that the objective

of the optimization is to find an unbiased predictor function.

However, because the GERM optimization involves the simultaneous determination of the
function’s coefficients for both the calculation of the residual and the weighting factor, the resultant
function is biased high. This is seen intuitively by noting that the ¢s are minimized if the f(x;,a) (to
be used in the numerator and denominator) is made higher than if it were established independently.
That fact has been confirmed by theoretical investigations on simple cases, such as a simple univariate
or a simple factor equation, and was further confirmed numerically on real cost data drawn from
the data base used in the development of the Unmanned Spacecraft Cost Model, 7th edition
(uscm7).®

The first inclination on discovering the bias in the GERM optimization was to cast doubt on
the entire method, both the error term formulation and the optimization calculations. However,
further examination has shown that the error term formulation is a correct one, but that a different
method of optimization has to be used. The most obvious approach is to uncouple the simultaneous
aspect of the optimization calculation by employing an iterative calculation to arrive at f(x;,a). This
approach has now been investigated and has been shown to produce a percentage unbiased estimator.

The optimization calculation can be stated mathematically as
Minimize ¥ [(y;~f;(x))/f,_,x) T, (5)

where j is the iteration number and the other terms are as defined previously.

This new optimization technique is termed Multiplicative Unbiased Regression Technique
(MURT). It allows the analyst to model a multiplicative error without introducing bias to the
resultant regression equation, and as such represents a significant addition to the regression tool box

that should be included in any general-purpose statistical package.

The following discussion presents the theoretical derivations used on simple cases to demon-

strate the bias in the GERM optimization and the empirical results established for more complex



cases, as well as simulation examples that confirm the theoretical findings. The examples also demon-
strate that the iterative approach does indeed produce an unbiased estimator. Furthermore, in the
course of this investigation, a theoretical correction factor has been derived that can eliminate,
approximately, the bias in the simultaneous optimization. This would only be of interest in an
application where a large body of work was accomplished using the simultaneous optimization. There
are other considerations in the adoption of an optimization technique involving the proper use of

statistical measures, and these are also discussed.

PROBLEM STATEMENT AND DEFINITIONS

The objective of the research was to find a regression technique to model a multiplicative
error term without bias. We have already described above what is meant by a multiplicative error
term and its importance to cost analysis. Figure 1 graphically represents the notion of a multiplicative
error by portraying error bars along the function with the span of the error bar proportional to the
value of the function at any point. For cost, this is the equivalent of saying “errors in cost are in

proportion to cost.”

Multiplicative Error Model
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Figure 1



We will also use the term “bias” often in referring to the quality of the estimator, throughout
the discussion, and so it is important to define what we mean by this term. In general, we define an
estimator to be unbiased if it is an expected value estimator throughout the range of the estimating
function. Figure 2 portrays this notion of bias. In the figure, the true function is shown with a solid
line along with the proportional error bands centered on the line. (The bell-shaped curve is meant
simply to show a normal distribution, although this is not necessary to demonstrate the notion of
bias.) The figure also shows eight sample points that one might expect to draw as a random sample
from the distributions about this function. The lower dashed line represents what best-fit regression
line might represent this sample. Even though this sample line does not fall exactly on the true line,
it would be considered an expected value estimator based on the sample drawn, and therefore is
unbiased. The upper dashed line is clearly not consistent with the sample, and we would say that it
is biased. We demonstrate unbias by showing that an estimator provides an expected value estimate
throughout its range. Further in the discussion, we will show some specific properties that can be

used to demonstrate whether or not an estimator is unbiased.

What Do We Mean By "Bias" in , fx)biased

a Regression Result -7 f(x} unbiased
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Figure 2



CANDIDATE MODEL FORMS TO EXPRESS A MULTIPLICATIVE ERROR

There are at least three distinct error formulations that have been posited and used to express
a multiplicative error term for regression analysis. One is the “log-error,” which expresses error

residuals by

ERROR; = logy, - log f(x;) (6)

Two additional forms to express a multiplicative error are developed through the use of weighted

residuals. One form weights residuals by the value of the observation shown by

ERROR; = [y; - f(x)1/y; ()
The second weights residuals by the value of the predicted function as shown by

ERROR; = [y, - f(x;)1/f(x;) 8)

This latter form is the one postulated by Book/Young of Aerospace and, by definition, should

produce an unbiased estimator.

The regression results and the corresponding statistical properties attending these different
error forms depend a great deal on the mathematical optimization techniques chosen. Least-squares
regression with the log-error form may be either linear or non-linear in log-space. It can only be

linear in log-space if the functional form is log-linear of the general form

p

f=Byx X' x" €, )

where

X%y, X, are the independent variables
BosBysB,. [Sp are the coefficients to be determined

€ is a multiplicative error term

This equation on transformation to log-space becomes linear with an additive error term so it can be

addressed with OLS. The same equation form can be addressed as a non-linear regression using the



definition of the error term given in equation (1) but without transforming the independent variables.
Furthermore, any equation form postulated with a multiplicative error term can be addressed with
non-linear regression applied to the error term defined by equation (1) above when f is not log-
linear. We shall refer to regressions applied to definitions of the error term given by equation (1)

as “log-error” regressions, with the choice of whether it is log-linear or non-linear up to the user.

Weighted least squares, wherein the ordinary error residual is divided by the value of the
observation at each point, has been used to express a multiplicative error. However, analysis of this
error form with a simple univariate system of data shows that any such estimator will be biased low,

and that the magnitude of the bias will be in some proportion to the variance.

The third error form, hypothesized by Book/Young, is weighted least squares wherein the
residual is divided by the value of the predictor function: that is, the estimator at each point. This
is a more intuitive form, but in its straightforward form requires a random variable, the predictor
function, to appear in both the numerator and denominator, of the objective function. This is

mathematically stated as

MIN T [(y,~-f&)/f )] (10)

Following the notation of Book and Young, we will denote the process of solving this minimiation
problem using a traditional non-linear optimization procedure as GERM-SIMUL (simultaneously

solves for the fit parameters as well as the weighting factors).

In searching for an unbiased solution, our preliminary investigations of these three different
error models convinced us that the GERM error model was intuitively correct but that the
“simultaneous optimization” solution method introduced bias. We reasoned that an iterative solution
approach would produce the desired result. The iterative optimization problem is stated math-

ematically as

MIN X [, -f&)/f; (x)T (11

where fj-l(Ki) is the value at each [i] of the predictor function of the previous iteration. By using an
iterative method, the denominator is a fixed value in each iteration of the optimization. All that

remained was to show that the iterations would converge and that the resulting predictor would be
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unbiased. In the ensuing discussions, this optimization is termed GERM-ITER since it preserves the
error model originally hypothesized by Book/Young, but is combined with an iterative solution

method.

Our preliminary investigations, both theoretical and empirical, have confirmed our hypothesis.
The four possible solution approaches for multiplicative error (log-error, weighted least squares,
GERM-SIMUL, and GERM-ITER) produce results generally depicted in Figure 3. The figure
presents a mass of data, shown by the squash-shaped boundary, that is supposed to represent a system
with multiplicative error. There is a solid curve running through the centroid of the system of data
which depicts truth and, therefore, the desired unbiased function. The four possible optimizations
produce the four curves that are shown approximately parallel to the true function. GERM-SIMUL
will always be high and the weighted-by-observation least squares will always be low. Log-error will
generally always be low, but its position depends on the probability density function assumed for the
error residuals (normally for log-linear regressions a log-normal distribution is implicitly assumed, and
this has been shown theoretically to always be biased low). GERM-ITER falls approximately on the

true function, deviating only in accord with the sampling statistics.
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In the next section we will present the theoretical and empirical findings that show the biases
and quantify their magnitudes. The focus will be primarily on the simultaneous weighted and iterative
weighted least squares optimizations, since these are new forms that have been posited for

multiplicative error.

THEORETICAL ANALYSES OF THE SIMPLE CASE

For the simple case, we assume a univariate distribution, by which we mean a sample of, n,
observations, y;, and there is no independent or driver variables. In such a case, we seek simply a

single, fixed value as a predictor, P, for y;,

P = C, C being a constant.

Traditional OLS

With traditional ordinary least squares (OLS) the optimization would be stated as

MIN ¥ (y,-P)

and the result would be:

This is the traditional result that is taught when no significant drivers for a problem can be found,

“the mean is the ‘best’ estimator.” It is also a property of y that it is unbiased (i.e., it is the

expected value and the algebraic sum of the error residuals is zero).

Weighted-Simultaneous (GERM-SIMUL)

If we define the error term as a multiplicative error, wherein the ordinary residual is weighted

by the value of the predictor, the optimization is

MIN X [(y;-P)/P]?

10



For this simple case the optimization can be solved in closed form, and the result is
P=y oy

where

o% is used here to represent the uncorrected variance about y, & (y;-¥)n .
Clearly, the term ¢?/y will always be positive so that, P, is always biased above .
If we divide, P, through by y, we obtain
P/y =1 + (a/y)

which more clearly shows the bias in the multiplicative space, and (¢/y)? can be defined as the mean

squared proportional error.

Weighted-Iterative (GERM-ITER)

If we now take the same error term used in the immediate above example, but now subject

it to an iterative optimization, it can be stated mathematically as

MIN I [(y,-P)/P, I’

for the first iteration where Py is some initial guess at P. The result of this optimization is

P, =y

where P, represents the first iteration. The next iteration is thus expressed as

MIN £ [(y;-P)/P,P

11



and the result will be

P,=Yy

Since P, = P, =y, the optimization has converged with the result

P=y,

which is unbiased and, when substituted in the original error term formulation, has preserved the

desired multiplicative error.

Weighted by the Observation

For the multiplicative error form created by weighting by the observation, the optimization

can be mathematically stated as

MIN Z [(y; - P)/y,I*

The closed-form solution of this optimization for the simple case results in an inequality which holds

P<y

where the equal sign only comes into play if the variance about y is zero. (See Appendix A for this

proof.)

Log-error

The optimization of the log-error formulation can be stated as

MIN X (log y, - log P)?

12



For any symmetric density distribution, the result of this optimization is

P<y

For the particular assumption of a log-normal distribution

;:.-:P*e"’ ’ 62/2.

[\

where o2 is defined as before and the term e has been often utilized as a theoretical correction

factor in log-error regressions. (See Appendix D for the derivation of this correction factor.)

THEORETICAL ANALYSES WITH A FACTOR EQUATION

Further closed-form analyses are possible for optimizations of factor equations (i.c., equations
of the form y = a*x) with weighted-simultaneous and weighted-iterative multiplicative error forms.
We have been unable to perform closed-form analyses of more complicated equation forms (e.g.,y =
a*x0y = a*xlb*xzc, etc.) with these multiplicative error forms. The case for the factor equation can
be stated as

Y = a*x*e€
where the multiplicative error term, €, has expectation
E() = 1

and variance, o2.

Weighted-simultaneous (GERM-SIMUL)

It is convenient for the closed-form analysis to transform y; by

z, = Yy,/x; -

13



Then the optimization is stated mathematically as
MIN X [y,/(a*x)) - 1P
oras  MIN {1/a?+Xz} - 2/axXz + n}.
The minimization seeks a predicted value for, a, and the result is
a=2z+09z
which is identical to the form for the weighted-simultaneous optimization in the simple case. The

expected value of z, is z since the x; are not random variables in the transformation. Thus, the

weighted-simultaneous optimization of the factor equation is biased high.

Weighted-Iterative (GERM-ITER)

For the weighted-iterative error form it is not necessary to perform the z, = y,/x, trans-
formation to conduct the analysis. The optimization can be stated mathematically for the first
iteration as

MIN X [(y, - a*x,)/f,]
where all the f; are set equal to 1 as the initial guess. The result of this first iteration produces

a = E(xi*yi)/zxiz.

For iteration 2, let the f; = a, *x, in the optimization function above and the result of iteration

number 2 is
a, = X(y;/x)/n

14



which is equal to z as defined above. Finally, a third iteration is performed with

f, = ay*x,.

The result for the third iteration is

£
I
-NI

or exactly the same value as was found for the second iteration. Since a, = a,, fj(xi) = fj_l(xi)

demonstrating convergence (here j designates the iteration number). Furthermore, the process has

converged on the value for a = z, and therefore the predictor is unbiased.

ANALYSIS OF EXAMPLES AND SIMULATIONS

The theoretical investigations were by necessity limited to simple cases. Most practical appli-
cations of regression analyses deal with more complex equation forms and, in the cost analysis
community, limited data sets. Accordingly, it is important to study and compare optimization tech-

niques involving real data with the newly hypothesized multiplicative error term.

Three examples from the USCM7 data base have been abstracted to test the theoretical
findings comparing GERM-SIMUL and GERM-ITER optimizations. The three examples are:

A data set for traveling wave tube amplifiers, 8 observations
A data set for digital electronics, 16 observations

A data set for tracking, telemetry, & control radio frequency
(TT&C RF) distribution systems, 13 observations

For each data set, engineering hypotheses were generated and tested by regression analyses
to determine which equation forms and parameters provided the greatest explanatory power. In all
cases, due to the range in the values of the observations, multiplicative error terms were hypothe-
sized. For this investigation, these three data sets were tested by the two new optimizations and

compared.
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The results of these tests are presented in Tables 1, 2, and 3. For each table, the observations
are listed by name and the observed value in column 1. (Since all three CERs deal with recurring
costs, the observed values are the theoretical first unit cost [T1] in thousands of dollars.) Columns
2 and 3 list the calculated results from the two regression equations, first for the GERM-SIMUL and
then the GERM-ITER. Columns 4 and 5 list the calculated residuals for the GERM-SIMUL, first
in terms of dollars and then in proportional error, by dividing column 4 by the predicted value in
column 2. Similarly, columns 6 and 7 show the dollar and proportional residuals for the GERM-
ITER regression. Column 8 shows the calculated differences between the two values (column 2 -
column 3) and these differences are transformed into proportional errors shown in column 9 by
dividing by the predicted value of the GERM-ITER regression, column 3. Column 10 simply
calculates the squared value of the proportional errors shown in column 9. The average of each
column is shown at the bottom row of the table. It should be noted here that the objective
function for the GERM-SIMUL regression is the sum of the squared errors shown in column 3.
Similarly, the objective function for the GERM-ITER regression is the sum of the squared errors

shown in column 7.

One condition that must be met, if an estimator is to be considered unbiased, is that the
algebraic sum of its percentage-error residuals must be zero (true for GERM-ITER but not for
GERM-SIMUL as shown by the averages for columns 5 and 7). This condition is not sufficient to
claim the estimator is unbiased, as this property must be demonstrated all along the function as well,
something we cannot show by these examples. However, when it is not met, it is sufficient to state

that the estimator is biased (the case here for GERM-SIMUL regression).

The theoretical investigations of the simple cases showed that the GERM-SIMUL should be
biased high and that the magnitude of this bias is equal to the mean-squared proportional error. This
is also demonstrated in the examples by comparing the average of column 9 with that of column 10
(the highlighted boxes). Only in the third example, the CER dealing with TT&C RF distribution
components, is the comparison not precise, although it is close. The difference is thought to reside
in the fact that the CER contains a dummy-type variable which, in this instance, produces a system
in which the proportional errors are not distributed uniformly over the range of the function. This
is shown by inspecting the residuals in column 9 of Table 3, which clearly shows two distinct classes

for the value of the residuals, one in the range of 0.0246 to 0.0549 and the other in the range of

16
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0.32 to 0.92. This example is perhaps better treated as two distinct data sets. All three examples,
however, confirm quite well the theoretical finding which states that the bias in the GERM-SIMUL
is equal to the mean-squared proportional error. (See Appendix C for derivation of an approximate

correction factor for GERM-SIMUL regressions.)

One of the shortcomings of the three previous examples is the small sizes of the data sets.
With samples this small, it is difficult to investigate the bias properties of the predictor function
throughout its range. To address this difficulty, several simulations were created and investigated.
Data sets of 100 observations were created by random sampling from multiplicative-normal error
distributions around several interesting functional forms. In each case, a particular functional form

was selected as a generating function representing “truth.”

An observation is created by sampling a value for the independent variable from among its
range in a uniform fashion. A corresponding error is randomly sampled from a normal distribution
of constant variance as represented in proportional error space. The sampled value of the independ-
ent variable is used in the function to derive a central value of the dependent observation, to which
is added the product of the random error times the value of the dependent variable calculated from
the function. This then constitutes a simulated observation for a known generating function with
known error properties. By sampling the independent variable uniformly throughout its range, we

create a data set that has equal representation throughout the range.

Figures 4 and 5 portray the results of regressions performed with one of the simulated data
sets. Figure 4 is the result when the GERM-SIMUL optimization is used for the regression analysis.

The generating function is
Y = 001 * X?
The estimated regression function for GERM-SIMUL is

Y_, = 0.010193 » X201

Although the coefficients of the regression equation appear reasonable, it is readily seen from the

plot that it is significantly above the true generating equation. It should be noted that, in

20



19§ e1e 1o11g danesidnjny patejnwig e o3 11 uoissaifoy TNWIS WIID b 21ndig

ISO-A o

jenoe-A o

YA u

0001

008

01

000z
000%
0009
- 0008
00001
ooozt
ooovi
00091
00081

C.Xel00 = A

uonouny [qQ ----> $Z8Z8 ¥1
s1013 doid wng ----> 79Z8 v 1-
seig [euonsodoid wng--—--> 7/9¢€°g1-

SlualdIYa0) uoissasbay----> Z0LEO'Z €61L0L0°0
: | v
(8.XlaV = A

21



198 eiR(q Jouyg daneddnniy paremnuig e 03 11 uoissaifoy YALI WAID S 21ndig

1S9-A o

[emoe-x

yinn-x =

009 00y

0oz 0

C.X«100 = A

uonoung IqQ ----> ZL6LE'LL
si10113 doid wng ----> GO-3Z'1-
swnig |[euojuodold wng----> 91651 b-

sluao1e0) uossaibay--—-> Z1OYEO'Z SPSB00°0

g v
. X)laV = A

22



generating the simulated data points, a constraint was applied to prevent any negative cost values,
which would tend to raise the level of the estimated function above the generating equation.
However, the estimated exponent more than compensates for the constraint such that the net effect
is to produce a high estimate. (Note that at the maximum value of the abscissa, x=1000, the

difference between 10007 and 1000793 is 23%.)

Figure 5 presents the results of the simulation for the GERM-ITER regression for the

corresponding generated simulated set of data points. The result is

Y, = 0.008545 » X?2034013

The figure clearly shows that GERM-ITER has removed most of the bias apparent in Figure 4, and
when allowance is made for the effect of the constraint noted above, GERM-ITER appears to be
well within the sampling error. Further, note that the value of the objective function (sum-squared-
error) is given in Figure 5 as 17.37972, which if divided by the sample size of 100 gives a variance,
uncorrected for degrees of freedom, of 0.173797. This represents, according to the theoretical
analysis, the estimated percent bias in the GERM-SIMUL regression. Since the two regressions
produce nearly the same estimate of exponent, the difference in the levels of the two functions is
represented by the differences in the estimated coefficients. Note that the coefficient in Figure 5 of
0.008545, when multiplied by 1.173797, very nearly equals the coefficient of 0.010193 in Figure 4
(1.173797 * 0.008545 = 0.01003).

Other simulations with varying equation forms have demonstrated the same property, namely,
that the percent difference between GERM-SIMUL and GERM-ITER is always very nearly equal
to the proportional variance in the data set. The results depart from this general property when data
sets are very small and the influence of a single point can be significant in estimating both coefficients
and exponents. However, when the data sets are large, as in the case of the simulations, it appears
that the effect of GERM-SIMUL is to raise the level of the function by a constant percentage
throughout the range of the data without modifying the exponent. This is what one would expect
based on the theoretical investigations with simple cases. (It can be argued that at every point within
the range of the independent variable(s) a sample of data can be treated as a sample of a univariate

function, and hence the result should be governed by the result found in the theoretical investigation.
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Thus, at every point throughout the range the function should be raised by a constant percentage

given by the value of the variance.)

CONSIDERATIONS OF GOODNESS OF FIT

The discussion above has treated the matter of bias in regression equations without much
comment as to its consequences. Clearly, the analyst wants to know to what degree he should pursue
the objective of eliminating bias in his results. Perhaps the most important characteristic of bias of
the type discussed above is its effect on measuring, statistically, the quality of the fitted regression
equation. Ordinarily, the analyst relies on a standard set of goodness-of-fit statistics such as “students

t,” “F,” standard error, and the coefficient of determination or “R2>»

Of these, the standard error is a direct consequence of the objective function used in the
least-squares optimization, and is used directly to compare results using the same objective function.
A standard error that itself is biased, such as in the case of GERM-SIMUL, cannot be used to
compare to unbiased standard errors even if they both purport to model multiplicative error. The
same is true of comparisons of standard error measurements between log-error optimizations and

GERM-ITER optimizations, although the differences here are of lesser order.

The use of the remaining goodness-of-fit statistics must observe many more constraints. The
use of “t” and “F” depends on a normal distribution for the error term and unbiased estimates of
the coefficients, characteristics that are commonly assumed in OLS regression analysis. Also, it is
necessary that the regression function be unbiased, which requires that all the significant driver
variables have been included. If a significant driver is omitted, the analyst cannot rely on the error
term being randomly distributed. To the degree that it is not, the measures offered for “t” and “F”

will be in error.

When the regression optimization is non-linear, the use of the “t” and “F” values is less
precise, even if all the significant drivers have been included. For non-linear regressions it is difticult
to establish that the regression equation is necessarily unbiased, and for that reason most statistical
packages show “asymptotic” values for these statistics. Still, the assumption of a normal distribution

of the error term must be satisfied.
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Figure 6 summarizes the applications of goodness-of-fit measures for most regression analysis
circumstances. It is understood, that in all cases, the analyst has succeeded in including all the signifi-
cant driver variables such that the error residuals can be described as random. It should be noted
that under no circumstances can goodness-of-fit measures be used to evaluate a GERM-SIMUL

regression result.

OTHER CONSIDERATIONS

° When can goodness-of-fit statistics be applied to judge
significance of model? (“t”, “F”, “R2”)

When analyst can assume a normal distribution
and the regression curve is unbiased.

Under Normal
Assumption
Goodness | Asymptotic
of Fit Goodness
of Fit
Linear oLs Yes
Regression OLS In log space Yes
Non-Linear Least-Squares GERM_SIM No
Regression Least-Squares GERM_ITER Yes
Least Squares in log-space Yes

Figure 6
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SUMMARY

This investigation of multiplicative regression techniques provides the basis for the following

two conclusions.

First, it is recognized that typical past practices in modeling multiplicative error terms were
restricted to techniques with known bias problems. The log-error technique is perhaps the best
known in its most used log-linear form. However, the problems in the use of log-error regressions,
whether linear or non-linear, do not involve the optimization mathematics but the bias on
transforming a logarithmic result back to unit space. If one can reasonably assume that the error
term in log-space is normally distributed (i.e., log-normal), this regression technique has much to
offer. It should be noted here that a log-normal distribution is probably a very good analog for the
distribution of cost errors. The log-normal distribution implicitly restricts costs to positive values,
something not true when one assumes a normal distribution in unit space. Also, the log-normal
distribution when viewed in unit space is skewed to the high side, a characteristic that appears
common in cost data. If the analyst has confidence in the log-normal assumption, the use of the log-
error term provides useful goodness-of-fit measures, proper only for evaluations in log-space. To the
degree that the log-normal assumption is valid, a theoretical correction factor can be applied to the

function transformed to unit space to provide an approximately unbiased result.

Second, we have shown that the error term originally defined by Book/Young, when coupled
to an iterative optimization technique, is capable of producing unbiased regression results with
multiplicative error. This is true independent of the error term distribution, providing all the
significant driver variables have been included, such that the error residuals can be accurately
described as random. If it can be confidently assumed that the error term is normally distributed, the
regression calculated measures of goodness-of-fit can be applied as well. No correction factor is
required. This new technique represents a valuable addition to the regression tool box, and for that

purpose, we have designated it the Multiplicative Unbiased Regression Technique (MURT).
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APPENDIX A

LOW BIAS IN WEIGHTED LEAST SQUARES

Prop: The traditional weighted least squares method using the reciprocal of the actual observations
as the weighting factors will produce a biased low estimator.

We now provide a proof of the above proposition in a univariate case.

If a simple multiplicative error model is given by

Y =f-¢ fori=1,..,n, eqn (1)
where f is a population constant, n is the sample size, and the error terms are ¢’s which are
independently identically distributed (i.i.d.) random variables with mean value of 1 and variance o2
Then the corresponding weighted least squares objective function using 1/y;2 as the weighting factors

will be given by

F-3 (] ean )
1 )’f

The closed-form solution for f derived from minimizing equation (2) is

g, 1
R
f= eqn (3)

n
1
X3

<

Now it is required to prove that

E 1

S Y fory, >0, ..,5,>0 eqn (4)
= 1
21: y;?

where the equality occurs if the y’s are all equal.



Let’s define z; =1/y; fori=1,...,n, then

eqn (5)
2+ 82z

where

n
Sz2 = E (Zi - 2)2/ n. uncorrected sample variance of the z’s.
1

Now we need to show that

g A =y fory,>0,...,y,>0
n l n eqn (6)
1 yj
ie.,
[E i][zyi]znz fory,>0,..,5,>0
1 )"- 1

eqn (7)
The above equation can be proved by Math Induction. For n=1, it is trivial that equation
(7) holds. For n=2:



¥, Y

GJ O TN
WY

8
N (yx ‘)’2)2 i 2}’1)’2 eqn (8)

Y1 Y2

2
. V1Y2
Y.y,

=22

Hence equation (7) is true for n=2. Now we assume that equation (7) is true for n = k-1, ie,

1 yi 1

k-1 1 k-1
B 2 ) o

Then we need to show that equation (7) is also true for n=k. Since it follows from both equations
(8) and (9) that

—
-
< |=
—
]
™
=
N
I
r
—_ i
X |
e
G
o

, kzll: yl.) [k: yi) f 1+ [kzli —y—‘:] [leE ‘yi) eqn (10)

k-1 +
(k—l)2 +1 + E (Z’f + 1‘.]
Y,

v

i=1
> k2 -2k +2 + (k-1)2
=k%2-2k+2 +2k-2

= k2

* Each term in the summation is greater than or equal to 2 by equation (8).
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Therefore, we claim that equation (7) (as well as equation (4)) is proved by Math Induction.
Equation (4) can be easily extended to the factor equation case.

If a factor model is given by
Y, =azx e fori=1,..,n eqn (11)

where a is a constant factor, x; is the independent variable for the ith data point and ¢;’s are as
defined previously.

The weighted least squares solution for minimizing the objection function

n yi _ ax,- 2
F = S
51—: ( Y, ] eqn (12)
is given by
>N EA D o
_ 1 Yi _ 1 Z;
Z": x;\2 z": 1Y eqn (13)
1 y,‘ 1 Z,'
where z; = y;/x; fori = 1,..., n. Then it follows from the same argument as given above, that

ds<z eqn (14)

For complicated equation forms, it can be shown by simulation results that the weighted least
squares solution (weighting by the actual observation) will still be biased low.



APPENDIX B

GERM FACTOR

It is proved in the text that in a simple multiplicative error model:

Y,=fe fri=L2..n can (1)

where all the terms are as defined in Appendix A, the GERM-SIMUL solution is

A -—

fG=y+Sy2/§ . eqn (2)

Then the uncorrected sample variance under GERM-SIMUL methodology, which estimates the
variance o2 of the €’s, is given by

ag);

eqn (3)

t 62 is also denoted by the term, coefficient of variation (cv).



where §? = Sy2 /y* is the uncorrected sample variance over the mean squared (in percent squared).

The above equation can be equivalently stated as

2 eqn (4)

It can be shown that 62 is an unbiased estimator of the population variance, o2, as the
sample size n gets sufficiently large. Since it follows by equation (2) that the magnitude of the bias
in GERM_SIMUL solution is approximately 62

2

7 G S, A2
A T eqn (5)
Therefore, the downward correction factor to adjust GERM_SIMUL solution is given by
GERM FACTOR = —
1+ &2
_ 1
Az
1 + % (from eqn (4))
n2
1 - dg
eqn (6)
2
= 1 - OG

In other words, the GERM FACTOR (given above) can be applied to the CERs that are alrcady
generated by GERM_SIMUL method, to approximately eliminate the upward bias in the level of the
function.

Fox (1 -6 = eqn (7)

And the downward bias in 852 can also be removed by dividing the above-mentioned GERM
FACTOR (see equation (4)).

5% / (1-6g) = & eqn (8)



This conclusion can be easily extended to a factor equation model

y; = ax; € fori=1,..,n,

where all the terms are as defined in Appendix A. The corresponding GERM_SIMUL solution is
given by

G-=7+8/7, eqn (9)

where z; =y;/x; fori=1,.,n, and S is the uncorrected sample variance of the z’s. The same
conclusion of the GERM FACTOR holds by similar arguments.

For complicated equation forms, the same GERM FACTOR can be verified by simulation
results.
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APPENDIX C

INTERESTING PROPERTY UNDER GERM

The average of proportional errors using GERM_SIMUL methodology is equal to its
uncorrected sample variance. In mathematical notations:

n f;_yi n f_yi2
E[T)/"=E(_‘;—) /no, eqn (1)

1 i 1 i

where vy, is the actual ith observation, f; is the ith fitted value by GERM_SIMUL method, and n is
the sample size.

This property holds even in some complicated model forms. For the illustrative purpose, we
now provide a proof for the univariate case; namely,

£t

_ B f—y,'z
/"‘E—f‘ /n, eqn (2)

1

where f =y + S /y by GERM_SIMUL method.

The proof of equation (2) is given as follows: The left-hand side of equation (2) can be
simplified as

- f_yi] = ;"’SyZ/;"y,'
. S}/y

* s /)

_ 8 /¥
1+82/y?
62
1+
(by equation (3)
=82, in Appendix B)

which is the right-hand side of equation (2) by definition.
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APPENDIX D

PING FACTOR

For a number of CERs in the cost analysis field, the error of an individual observation (e.g.,
cost) appears to be approximately proportional to the magnitude of the observation. In such cases,
it is appropriate to hypothesize a multiplicative error term for the CER. One common practice in
the past is to work in the log space by taking natural logs of both the dependent variable and the
equation form. When the transformed equation is linear in log space, OLS can be applied to derive
a Best Linear Unbiased Estimator (BLUE) in log space which is also the Maximum Likelihood
Estimator (MLE) in log space. If the equation form is not log-linear, the log transform can still be
used to model a multiplicative error, but the optimization will be non-linear least squares. The non-
linear (iterative) solution thus derived will be asymptotically unbiased in log space. Although the
mean and median are the same for the log-linear CERs in log space, when transforming the equation
back to unit space the mean and median differ, with the CER predicting closer to the median instead
of the mean. Therefore, the direct translation of the equation back to unit space tends to
underestimate the mean value of the original population, and the Ping Factor, a multiplicative
correction factor, is used to adjust for this bias and the sampling bias for estimating the median in
unit space.

Let us propose a statistical hypothesis with a multiplicative error term. If a multiple log-linear
regression model is given by the following:

p B B .
Y, = e*X,,"' X, " ... Xp,-"e,., fori=1,....n,
eqn (1)
In(X,)'8
- R
where €;'s are i.i.d. random variables associated with LN(O,oz), o, By, s pp, and o2 are unknown

parameters, Xy;, Xy;, ..., X,; are the independent variable values for the ith data point, In(X,)" is a row
vector of the Xj's in log space (i.e., In( Xigt = (1, InXy;, - lnXpi)), B is a column vector of the « and
B’s (ie, B' = (&, Bys o Bp)), p is the total number of independent variables in the model, and n is
the sample size. The above model can be equivalently stated as

In¥)) = « +pin(X;)) +... + Bpln(Xpi) +1n(e,)
eqn (2)
=In(X)'B fori=1,...,n,
where In(e;) is distributed as N(0,02) (fori = 1, ..., n). In other words, the conditional distri-

butions of Y at a given x value, say X = x,, in both log and unit space are given respectively by the
following equations:



In(Y/X=x,) = In(x,)'B ~ N(ln(x)'B, o*) eqn (3)

1 13
Y/X=x, = em®2® LN(In(x))" B, 0?) eqn (4)
where In(x, )Y (=(1, In(xyp), - - - s In(xp,)) is a vector of given driver values in log space. It follows

from equation (3) that the conditional mean and median value of Y (in log space) at this given value,
X,, are both equal to

E(n(Y/X=x)) = In(x)'B =p, =M, eqn (5)

However, it can be easily shown that there is a difference between the conditional mean and median
values of Y (at the given x.) in unit space.

In(x)'B + 022

E(Y/X=x) = e = B, eqn (6)

In(x)'B

Median(Y /X=x)) = e =M, eqn (7)

And e“'” can be regarded as a factor explaining the difference between p, and M,; namely,

p, /M, = e eqn (8)*

If the classical assumptions hold as explained in equation (1), the OLS method can generate
an unbiased estimator of Y in log space (at any given x value, say X=x,), which also follows a normal
distribution.

In(¥/X=x) =In(x)'B ~ NUnx)'B, r,02) eqn (9)

where r, = In(x,)(X'X)In(x,)", X is the design matrix in log space, and In(x,) is, as explained above,
a row vector of given independent variable values in log space. Therefore, the distribution of the
direct translation of the above equation into unit space is then given by

2 P1x= ‘
PX=x, = "5 _ 2t nan) B, r,02), eqn (10)

T It is clear from equation (8) that the direct translation of the solution from log space to unit
space will not be a good estimator of the population mean, p, if the difference between p, and M,
is not negligible.
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with the mean value equal to
E(e lnY/X=£A) _ e(ln(x) B +r,0%2 eqn (1)

Then the net bias for estimating the mean value in unit space at a given x, vector is

e IR eqn (12)

Let’s use two simple examples to illustrate the above equation. In the univariate case (where
T = (), the population mean is underestimated by an amount

e ®*'2, (a transformation bias) eqn (13)
and the true median is overestimated by an amount
e ®*1?" | (a sampling bias) eqn (14)

Thus, the net bias can be expressed by the factor

e 1-1mae?/2 eqn (15)

For the one independent variable model, the net bias is given by

(1 1 (zn(x,)-my)_ ot 4 eqn (16)
e

However, the estimator of the population variance o2 is s2,77 which on the average
overestimates o2 in unit space since by Jensen’s inequality:

E(es*?) > e % = g2 eqn (17)

Therefore, it is necessary to develop a function to generate an unbiased estimator for the net bias
factor given in equation (12). Such a function, g, is given below

Lt R (n-k)2 13 "
80 = 1+ I Y Ded | k) eqn (18)

T SSx is the sum of squared deviations (in x) about the mean in log space and x,, is a given
x value. From this equation, it is clear that the estimating bias associated with a given point, i.e., x,,
depends on how far x, is from the center of the data base. The minimum bias occurs when In(x)

= In(x).

Tt s stands for standard error of estimate in log space.
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where
= (1-r1,) 8?2
= total number of coefficients to be estimated,

total number of data points, and
standard error of estimate in log space.

2 T

i

The above defined function, g, has a property that

E(g(a-s®) = e 2,  for any real number a eqn (19)
Hence the unbiased estimator for equation (6) is given by

e’ Xﬁ: X;} '8((1 ""0)52/2) s eqn (20)

where g((1-r,)s?2) is the so-called net correction factor. Since r, has to be evaluated at each
different x level which is of little realistic use, we now use k/n as an approximation of r, for any given
x value, i.e., the value of t to be used in the function g(t) is

2

t:(l_k)s_ , eqn (21)
nj 2

The term k/n is the expected value of r,. In other words, the Ping Factor is a general correction for

the level of the function. It is evaluated near the centroid of the data base. If n gets sufficiently

large, the Ping Factor can be approximated by

1 - £\

( k) s? eqn (22)
PF=¢ ™2

In the exponent of equation (22), the first term is used to adjust the downward bias between the
mean and the median (can be regarded as a transformation bias), the second term is used to adjust
the upward bias for estimating the median (can be regarded as a sampling bias). Some references
consider e* as a representive of the level of the (conditional) median for the entire function. This
could be very misleading if the intercept term is far away from the mass of the data points. In this
circumstance, the variance in the estimate of the intercept can be very large, larger in fact than the
population variance of the regression line. To use the median value of Y at the intercept, (i.e., T;),
as the level of the function and apply it to correct the upward bias (of the median) of the translated
equation can cause the corrected function in some cases to lie outside the range of the data set.

Generally, the Ping Factor should be applied to all equations fit in log space by respecifing
each equation’s constant term as the product of its original constant and the correction factor.
However, caution should be exercised if dummy variables are used to differentiate observations with
different attributes (e.g., airborne vs ground based antenna). A CER’s predictive capability might not
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be improved by applying one adjustment factor to two or more different populations if the individual
sample variances associated with these different categorical data are not equal.

A more detailed discussion of the Ping Factor can be found in Tecolote TR-006/2, “Error
Corrections for Unbiased Log-Linear Least Squares Estimates.”



REFERENCES

Goldberger, Arthur S., “The Interpretation and Estimation of Cobb-Douglas Functions,”
Econometrica, Vol. 35, July-October 1968, pp. 464-472.

Dagel, Harold, “Unbiased Estimation of Power-Function Equations,” unpublished paper,
Washington, DC: Headquarters Naval Material Command, Cost Analysis Division, December

1984.

Lundegard, Robert J., “Unbiased Estimation of Learning Curves,” letter from Chief of Naval
Material to Commander, Naval Air Systems Command, dated 14 February 1985.

Dorsett, J. T., letter to Chief of Naval Material, responding to an earlier memorandum from
Commander, Naval Air Systems Command, dated 18 January 1985.

Duan, Naihua, “Smearing Estimate: A Nonparametric Retransformation Method,” Journal of
the American Statistical Association, Vol. 78, September 1983, No. 383, pp. 605-610.

Hu, Shu-Ping and Arve Sjovold, “Error Corrections for Unbiased Log-Linear Least Square
Estimates,” Tecolote Research, Inc. TR-006/2, March 1989.

D-6



