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1.0 INTRODUCTION 

1.1 PURPOSE 

The purpose of the Cost Schedule Risk and Uncertainty Handbook (CSRUH) is to describe best practice 

techniques to model cost estimate uncertainty in order to calculate and report the cost risk.  The handbook 

also provides guidance on how to capture schedule uncertainty and the impact of discrete events (without 

double counting) that may influence the cost risk assessment.  The goal of the handbook is to define and 

clearly present simple, well-defined cost risk and uncertainty analysis processes that are repeatable, 

defendable and easily understood.  While capturing schedule uncertainty is a theme throughout this 

document, the handbook content is applicable to the development of any uncertainty model. It also provides 

an introduction to building a fully integrated cost and schedule risk and uncertainty analysis.  To aid in the 

distinction of these very different types of models, we will use the following definitions: 

 CISM:  The Cost Informed by Schedule Method is a cost uncertainty model that has some level of 

duration uncertainty built into it such that duration uncertainty influences the cost simulation results.  

Building a CISM model, illustrated in Figure 1-1, is the focus of this handbook.  However, the 

guidance is also applicable to the development of cost uncertainty models that are not informed by 

schedule. 

 FICSM:  The Fully Integrated Cost/Schedule Method is typically a cost loaded schedule model with 

cost/schedule risks and uncertainty addressed.  The elements of a FICSM model are introduced in 

Appendix B.  The FICSM approach is currently gaining community interest and may be the way of 

the future. It is introduced in this handbook and will be more fully addressed at a later date. 

Throughout this handbook, many technical terms are used that are derived from comprehensive and often 

conflicting cost/schedule uncertainty sources listed in Section 7.0.  For a consolidated list of definitions, see 

Appendix A .  It is expected that the reader has a good knowledge of cost estimating and statistics. 

 

Figure 1-1  CISM Model Development Flow 

Risk and uncertainty data should be collected and input into the model at the same time as the point estimate. 

Recommend incorporating schedule uncertainty via CISM or FICSM approach. 
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1.2 RISK AND UNCERTAINTY 

1.2.1 The Requirement for Cost Risk and Uncertainty Analysis 

Cost analysts do their utmost to develop the best cost estimate possible from the available information.  This 

should include building the cost model to be consistent with the project’s planned schedule.  The fact 

remains that every assumption and variable driving the cost estimate represents only one point within a range 

of possible values.  For this reason, a cost estimate of this type is called a “point estimate.”  

Ensuring the cost model point estimate is sensitive to schedule uncertainty is not easy.  Typically, analysts 

collect completed project data as a basis for developing cost estimating relationships (CERs).  Depending on 

the nature of the data, the CERs may already capture some degree of schedule uncertainty.  A cost analyst 

must be able to defend the uncertainty built into the model and demonstrate there is no “double counting” of 

uncertainty. 

The key steps in the cost estimating process are illustrated in Figure 1-2
1
.  This handbook focuses on the 

mechanics of conducting the risk and uncertainty analysis. 

   

Figure 1-2  The Cost Estimating Process 

1.2.2 The Difference Between Risk, Opportunity, and Uncertainty 

There is an important distinction between the terms risk, opportunity, and uncertainty:   

 Risk is the probability of a loss or injury   

 Opportunity is a favorable event or outcome 

 Uncertainty is the indefiniteness about the outcome of a situation  

These definitions are supported by References 24, 53 and 68.  In a situation that includes favorable and 

unfavorable events, uncertainty captures both opportunity and risk.  Uncertainty is defined in cost models for 

the purpose of estimating risk.  In the context of a cost model, risk is the probability that a specific funding 

level will be exceeded.  The definition of risk, opportunity, and uncertainty in the cost estimating context is 

illustrated in Figure 1-3. 

                                                 
1
 This figure is replicated from the 2009 GAO Cost Estimating and Assessment Guide (Reference 68). 
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Figure 1-3  Risk, Opportunity and Uncertainty in the Cost Estimating Context 

 

The goal of the simulation model is to combine all the sources of cost uncertainty in order to estimate the 

risk of exceeding a given budget. 

1.3 SOURCES OF UNCERTAINTY 

1.3.1 Uncertainty to be Captured 

Every program has many sources of uncertainty.  The goal is to model the combined effect of all sources of 

uncertainty in order to assess the risk of exceeding a given budget.  At a minimum, the model needs to 

capture the uncertainty of: 

 Parametric CERs including factors and cost improvement curve (CIC) equations 

 CER inputs, complexity factors for analogies, engineering judgment 

 Any other cost drivers (man-hours, head counts, rates, ratios, overhead, fee, etc.) 

 The planned schedule (durations) 

 Risk register events, both probability of occurrence and the consequence 

This handbook will provide guidance on how to apply correlated uncertainty across these elements of a cost 

risk and uncertainty model. 

1.3.2 Uncertainty Captured From the Risk Register 

The CISM modeling process defined in this handbook begins by addressing the uncertainty (see Section 

1.4.1) in the cost model which will include modeling the impact of the risk register.  The goal is to model the 

combined effect of these sources of uncertainty in order to assess the risk of exceeding a given budget.  But 

modeling the uncertainty in the cost estimate is not sufficient.  The analyst needs to capture the risk register 

as well. 

The Risk Management Guide for DoD Acquisition (Reference 53) contains baseline information and 

explanations for a well-structured risk management program.  Risk management is a fundamental program 

management tool for effectively managing cost, schedule, and technical risks associated with system 

acquisition. The Risk Management Guide for DoD Acquisition provides guidance on how to identify and 

assess negative events and chose not to address opportunities.  A direct quote is “Risk addresses the potential 

variation in the planned approach and its expected outcome. While such variation could include positive as 

well as negative effects, this guide will only address negative future effects since programs have typically 
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experienced difficulty in this area during the acquisition process.”  In the CSRUH, however, the risk register 

will capture not only the potential negative outcomes (risks) but positive outcomes (opportunities) as well.  

Opportunities should not be confused with risk mitigation plans.  To clarify the difference between risk, risk 

mitigation, and opportunity in the context of the risk register, consider a project that has an expensive test in 

the uncertainty model, but the 90% probability that the test will have to be repeated is not yet captured.  

There are several approaches to model that situation, including:   

 Adding a risk event to the risk register that captures the 90% probability and cost impact of the 

second test 

 Adding a risk event to the risk register but also adding risk mitigation effort (cost) to the model to 

reduce either the probability of the second test or its consequence or both.  Risk mitigation effort in 

this context is not free.  We are not talking about plans to “scrutinize more”, “manage better” or other 

such euphemisms.  Risk mitigation effort in this context is a deliberate decision to add scope to the 

project in order to reduce/eliminate an identified risk.  Obviously the cost of the risk mitigation effort 

needs to be substantially less than the impact of event to be mitigated to make it worthwhile.  

 Adding both tests to the uncertainty model.  In this case the risk register should include the 10% 

opportunity (cost savings) that the second test is not required.  The probability of this opportunity 

could be increased if risk mitigation effort is also added. 

Since the risk register contains both risks and opportunities, it would seem appropriate to assign it a name 

other than: risk register.  However, risk register is a very common term used to define potential events that 

could have either a negative (risk) or positive (opportunity) impact on the project.  As an example, the 

Association for the Advancement of Cost Engineering (AACE) International recommended practice 57R-09, 

Integrated Cost and Schedule Risk Analysis (SRA), (Reference 79) defines risk events as events that may or 

may not happen, but if they do happen they will have a negative or positive impact on the cost or schedule or 

both.  The risk register is a listing of all identified risk events that impact the cost model. 

The primary source of the risk register will be from the program risk management team.  However, the risk 

management team will not have a cost focus.  They will be assessing a wide variety of risks to the program’s 

objectives and characterizing their impact on cost, schedule or both.  The role of the cost analyst will be to 

use this information to select those risks not already inherently captured in the cost uncertainty model and 

add them as discrete events with a probability of occurrence and the event’s impact on cost and/or schedule.  

Capturing the risk register is discussed in Section 2.7. 

The uncertainty model must capture uncertainty of cost methods, cost method inputs, and the risk register.  

Where possible, the influence of duration uncertainty should also be captured.   

Any additional uncertainty that can be modeled in a defensible way should also be captured. 

1.3.3 Uncertainty That Could be Captured 

There are many other potential sources of cost estimate uncertainty.  If defendable methods are available, the 

analyst should consider capturing the uncertainty of the following: 

 Inflation 

 Acquisition strategies 

 Requirements creep 

 Significant change in the planned scope 

 Different contracting options/strategies  
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 Congressional/Service actions (e.g. budget perturbations) 

 Anything outside the project manager’s control that will affect the project that can be modeled  

No standard, approved modeling methods are provided in this handbook for these uncertainties.  Inclusion of 

these uncertainties should be done with great care to reduce the likelihood of double counting or creating 

overly pessimistic assessments. 

1.3.4 Uncertainty That Should Not Be Captured 

Special consideration should be given to uncontrollable events that can impact the cost of a program.  In 

most cases, these events should not be included in the uncertainty assessment.  If at all, they could be the 

subject of a separate sensitivity analysis and discussion.  Events such as natural disasters (hurricanes, 

earthquakes, etc.), industry collapses (bankruptcies, litigation, etc.), mission changing events (e.g. space 

shuttle disaster), and world events (e.g. September 11
th

) should generally be excluded from explicit 

uncertainty modeling.  

1.3.5 Elements That Could Be Regarded as Certain 

There are actually several elements in the model that should not be regarded as uncertain.  The most obvious 

portions of the estimate that should be considered certain are sunk costs (see Section 2.8.2).  Items that may 

be considered certain include: 

 Elements with inconsequentially low cost need not receive uncertainty treatment unless there are 

many of these elements.  Defining inconsequentially low cost is an analyst or agency judgment. 

 Sunk costs 

 A design fact (i.e. for each item A procured, three of item B will be procured) 

 Unit of Measure conversion factors 

 Production minimum or maximum sustainable rates 

 Production quantity is often a source of uncertainty but generally not assigned an uncertainty 

distribution.  Instead, various quantity scenarios are best treated as discrete what-if cases, each of 

which is subjected to the risk and uncertainty analysis. 

 Some forms of government furnished equipment can be considered as certain if the analyst is only 

concerned about guarding against uncertainty for those items for which your agency or department 

has to pay 

1.4 OVERVIEW OF COST RISK AND UNCERTAINTY METHODS 

1.4.1 Simulation-Based Cost Risk and Uncertainty Analysis 

With several powerful commercial and government simulation tools from which to choose, simulation has 

become the most popular method of modeling cost uncertainty.  For details on simulation methods see 

Appendix A.10.  The specific type of tools to be used is a function of the type of model to be created: 

 CISM models: The simulation tools most commonly used in the DoD cost analysis community 

suitable for CISM models are Crystal Ball (CB), @RISK, and the Automated Cost Estimator (ACE).  

CB and @RISK are Excel-based general-purpose commercial risk and uncertainty modeling tools. 

ACE is a DoD-funded tool designed for the government cost analysis environment.  This handbook 

does not recommend any specific tool, but does acknowledge that these three are in common use and 

widely accepted.  Examples in this handbook will be modeled using all three of these tools and it will 

be shown that probability results are within a percent or less of each other.  It is the responsibility of 
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the analyst to determine which tool to use in accordance with their organization’s policy and tool 

availability.  

 FICSM Models: There are even more tools to choose from and in use throughout the government to 

support FICSM model building and they tend to either be add-ins to specific scheduling tools, or 

stand-alone tools that will import the schedule model files.  They include Primavera Risk Analysis 

(PRA), @RISK for Project, Risky Project, ACEIT (the Joint Analysis Costs and Schedule – JACS 

component), Acumen Fuse and Polaris to name a few.  Unlike the spreadsheet-based tools, these 

schedule-based simulation tools are relatively new to the industry, many of them emerging in the last 

few years.  Also unlike the spreadsheet-based tools, the differences between them make it 

challenging to have them agree completely with each other.  The state-of-the-art for FICSM models 

is changing very fast and so are the tools.  For that reason, the FICSM model example in Appendix B  

was only developed in one tool to demonstrate one possible way to generate a FICSM result. 

1.4.2 Other Methods 

There are acceptable methods other than simulation for performing an uncertainty analysis.  These include: 

 Outputs-Based Uncertainty: The outputs-based method applies uncertainty directly to the cost 

model results rather than to the model’s inputs and is discussed further in Section 5.4 

 Enhanced Scenario Based Method (eSBM):  eSBM is not a simulation-based approach.  It is based 

on developing one or more potential scenarios and using historical information to help define the 

impact. eSBM also provides an output uncertainty distribution around scenario results based on 

historical cost growth data.  eSBM is discussed further in Section 5.2.  

 Method of Moments: Method of moments is an analytical approach to estimating total program 

uncertainty.  It can be useful when there is a need to sum large numbers of uncertain elements.  

Method of moments principles are applied in Section 3.3.3 to compare an analytical solution to a 

simulation result when summing correlated uncertainties.  It is also discussed in Section 5.3. 

2.0 COST INFORMED BY SCHEDULE METHOD MODEL 

2.1 STRATEGIC APPROACH 

A systematic process for developing a CISM model, regardless of the tool used, is summarized in Figure 

2-1.  In this section of the handbook we will provide guidance on each step of the process.  The important 

messages of Figure 2-1 are:   

 The point estimate is the anchor of the risk and uncertainty modeling process.  It must be complete 

before the risk and uncertainty modeling can be completed. 

 Cost methods and their drivers must be assessed for uncertainty.  Use of schedule duration sensitive 

cost estimating methods and uncertainty around schedule duration is strongly encouraged. 

 Risk register items must address risk and opportunity and they may influence methods or drivers 

 Wherever feasible, define uncertainty parameters as a percent of the point estimate to avoid problems 

when performing what-if drills as uncertainty will scale with the point estimate 

 Measure the correlation present in the model to aid in determining if additional correlation is required 

 Measure, do not guess, the number of simulation trials required to obtain a stable, converged result 

 Compare results with those shown in Section 3.5.3 to help with understanding the results 



 Joint Agency Cost Schedule Risk and Uncertainty Handbook 

 . 7 

  

Figure 2-1 Overview of the Simulation Method 

The process is iterative as indicated by the feedback loop passing though the “unsatisfactory results” block.  

Pausing to review for consistency in how the risk and uncertainty assumptions have been applied and to 

compare the statistical results with metrics suggested in Section 3.5 will improve the quality of the overall 

result.  In the CISM modeling approach, uncertainty is applied to every element significantly influencing the 

cost estimate, including task durations.  Analysts are encouraged to find ways to at least introduce schedule 

uncertainty into the cost model.  The example model will illustrate one way to introduce schedule uncertainty 

into a cost model as inspiration for the analyst to introduce schedule into his/her models.  

2.2 THE POINT ESTIMATE 

2.2.1 Point Estimate Definition 

The starting point for any uncertainty analysis method is a point estimate.  The point estimate’s cost and 

schedule must be based upon a realistic, documented definition of the program. Depending on the objective 

of the estimate, the point estimate can be based upon: 

 Program of Record:  defined in the program documents  

 Assessed Technical Baseline: alternative that reflects a technical assessment (see Reference 95) 

 What-If Case: for a specific sensitivity analysis 

When incorporating schedule uncertainty into the cost model, analysts should be cognizant of the fact that 

cost estimates are structured very differently than schedule estimates: 

 The cost point estimate (PE) will be derived from an approved work breakdown structure (WBS).  

MIL-STD-881C (Reference 81) presents direction for effectively preparing, understanding, and 

presenting a work breakdown structure.  It provides the framework for Department of Defense (DoD) 

Program Managers to define their program’s WBS and also for defense contractors in their 

application and extension of the contract’s WBS.  The model’s O&S phase framework may follow 
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the structure in the OSD CAIG's O&S Cost Estimating Guide (Reference 60). Cost estimating 

methods are driven by uncertain technical, schedule, and programmatic inputs.  This is consistent 

with the idea that the point estimate inputs should reflect the best assessment consistent with the cost 

estimate objective.  Appendix A.2 contains further details on the nature of a cost point estimate. 

 The schedule point estimate (PES) is an integrated network of activities containing all the detailed 

discrete work packages and planning packages (or lower-level tasks of activities) necessary to 

support the events, accomplishments, and criteria of the project plan.  Please see Appendix A.1.10 

for a discussion of an Integrated Master Plan (IMP) and Integrated Master Schedule (IMS).  In this 

handbook and the example model (both CISM and FICSM), we assume that neither the IMP nor the 

IMS are available.  Consequently, the schedule developed from program documents should follow 

the concepts of an IMS, but at a much reduced level of detail.  Ideally, it will follow the same WBS 

structure as used to develop the point estimate (Reference 68). 

The cost and schedule point estimates must be consistent with each other and the estimate objective. 

2.2.2 Point Estimate Total Does Not Capture Risk or Uncertainty 

The total PE is the sum of methodologies applied at the lowest level in the WBS. The PE at any level in the 

WBS does not change with the application of risk and uncertainty.  But with the application of risk and 

uncertainty, other values (e.g., mean, median, mode or some other percentile) are available to be selected as a 

point estimate.  The cost PE should not include any extra dollars inserted into individual cost elements to 

address some measure of estimate uncertainty.  Nor should elements like an Engineering Change Order 

(ECO) be used to capture uncertainty of other cost elements.  WBS elements like ECO should be estimated 

in the same way as other WBS elements: based on methods derived from historical data or expert opinion, 

but without additive “pads” or “margins” to address suspected shortfalls in the PE of other WBS elements.  

Planned engineering can be captured explicitly. Unplanned engineering changes should be captured through 

uncertainty modeling. 

The degree to which the selected cost estimating method may underestimate or overestimate cost should be 

addressed in the uncertainty analysis, not by understating or overstating the results of the cost estimating 

method.  Cost drivers such as weight, code count, volume, power, rates, etc. should reflect a documented 

value and not some lower or upper bound.  The potential for a cost driver to be something other than its 

documented value should be handled in the uncertainty analysis process. 

This handbook provides guidance on how to apply risk and uncertainty to the PE and PES.  No matter how 

much effort is applied to estimating lower-level WBS elements, the parent (or total) levels in the PE can only 

be the most-likely value if every child estimate is a most-likely with perfectly symmetrical uncertainty.  In 

practice, this is never the case for cost estimates.  The objective of the risk and uncertainty analysis is to 

estimate the combined uncertainty of every element based upon cost, schedule, technical, and risk register 

influences (avoiding double counting risks) to provide a basis for estimating the probability (risk) of 

exceeding a specific budget. 

Parent level totals throughout the point estimate WBS will not reflect most likely results. 

2.2.3 Point Estimate Construction 

When performing cost risk and uncertainty analysis, the analyst should ensure that the point estimate is as 

complete as possible.  No amount of agonizing over distribution shapes, bounds or correlation will make up 

for the exclusion of elements required in the estimate or using estimating relationships that are completely 

inappropriate for the system in question.  Yes, collect the necessary data and build uncertainty as the model 

is developed, but ensure that the point estimate is as complete and robust as possible. 
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This handbook uses a simplified missile WBS (based on MIL-STD 881C) as shown in Figure 2-2.  This 

example will be used throughout the handbook to illustrate cost risk and uncertainty analysis methods, 

processes, and effective reporting.  The models are available with this handbook in @RISK, Crystal Ball and 

the Automated Cost Estimator (ACE).  For details, see Section 7.2.2. 

  

Figure 2-2  Example WBS and Input Variables 

As shown in Figure 2-2, only a few duration variables are in use and it will be shown this has a significant 

impact on the cost uncertainty result.  Additionally, two risk register events are included with a total of one 

duration and two cost impacts.  Note how the risk register is integrated into the model.  This approach makes 

it easier to build the model, but there remains the requirement to expeditiously identify and cross check risk 

register items with the source. 

While O&S is not explicitly addressed in either the handbook or the example, the guidance is intended to be 

generic enough to be applicable to any type of estimate, as most cost estimating methods are addressed. 

2.2.4 Modeling Approaches 

Once the analyst has identified the scope and schedule and has defined the program WBS (see WBS example 

in Figure 2-2), there is the task of populating the lowest level of the WBS with cost estimating methods. 
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While the modeling approach to each element arises from the four standard estimating methods (i.e., 

analogy, parametric, engineering, and extrapolation), the choice of how the methods are implemented will 

determine how uncertainty is to be assigned.  This handbook will provide specific guidance on the following: 

 Cost as a function of technical and/or schedule parameters:  Uncertainty is assigned to the 

equation itself and to its inputs 

 Cost as a factor of another cost:  The factor is one form of a parametric equation, however it tends 

to be used to estimate cost as a factor of another cost.  The factor is uncertain and additional 

uncertainty is inherited through the cost variable. 

 Level of Effort: Quantity times the cost per unit, burn rate times a duration, and other engineering 

calculations. In these instances the equation or build-up method itself is not uncertain.  However, 

each variable in the method needs to be assessed for uncertainty. 

 Throughputs: Analogies, quotes, and subject matter expert (SME) opinions are almost always 

uncertain.  While the source value may be a known, its applicability to the new program may be 

uncertain. 

 Third Party tool results:  When moving results from another model or tool into another, it is not 

enough to import the point estimate; the uncertainty needs to be imported as well 

2.2.5 Duration Sensitive Cost Estimating Methods 

There are many ways to cause the cost model to be sensitive to duration.  Duration should be assigned at the 

lowest possible level in the cost model (rather than assigning the same top level duration to all lower level 

tasks). Applying uncertainty directly to dates is discouraged.  The date 01 October 2013 is interpreted by 

Excel as 41458.  Plus or minus a small percentage results in a very long duration relative to most projects.  It 

is more intuitive and easier to control when uncertainty is applied to durations in terms of months or days.  

The example model includes several such methods that should not be construed as required or even 

recommended practices.  They are included here only to illustrate and inspire.  Each of the following are 

built into the example @RISK, Crystal Ball and ACE example models: 

 EMD Start: A planned start date of 01Oct2013 is defined.  A start delay of two months is defined 

and used to calculate a modeled start date using Excel and ACE date functions
2
.  This structure 

makes it easy to cause the modeled start date to be uncertain.  This may have no effect on a constant 

year estimate, but it will impact the TY estimate. 

 EMD Duration:  A most-likely EMD duration is defined in months and used to calculate the EMD 

end date.  The EMD end date is also influenced by a risk register event. 

 Link EMD End to Production Start:  Production start is modeled as EMD end.  There are several 

alternative variations that could be considered. 

o Independent: Production start could be modeled similar to EMD start, and independent of EMD 

end.  In our model, the Production schedule is fixed and unlinked to EMD by default. 

o Lead/Lag: The PES could include an uncertain lead/lag providing for production start to either 

have a gap or overlap EMD end.  It is not uncommon, for instance, for production to begin before 

EMD has concluded. 

                                                 
2
 Note that Excel YearFrac(FromDate, ToDate, [Basis]) either omitting or using a value of 0 for the optional basis variable forces 

Excel to assume 30 day months and 360 day years. Many financial calculations are made under these assumptions. Use “1” for the 

optional basis value to force YearFrac to use actual dates, and to match the ACE DateYearDiff function. 
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 Production Duration:  For the example model, the baseline assumption is that 600 missiles will be 

obligated at a rate of 150 per year.  The first and last year quantities are influenced by the production 

start date.  The model adjusts the duration of production for the assumed production rate. 

In order to cause the model cost to be sensitive to duration, the following modeling choices were made: 

 Directly influenced by duration:  System engineering, program management, and test and 

evaluation costs are often directly related to duration since it is necessary to retain staff when 

durations expand and staff can be reassigned when projects end early.  Estimating methods tend to 

estimate total cost.  It is important to also estimate the nominal duration associated with the total cost.  

This provides a basis for estimating a monthly or annual burn rate ($/month or $/year) and thus create 

an estimating method that is directly influenced by duration (burn rate * duration). 

 Cost Improvement Curve influenced by duration:  Production duration is influenced by total 

quantity and production rate.  In this situation, a unit or cumulative average CIC (learning curve) 

result is not influenced by duration, but a rate-affected CIC result will be influenced by duration.  The 

example model employs a rate-affected CIC.  If the rate per year is changed, duration and total cost 

will change.  Additional CIC guidance is in Section 2.8.5. 

 Indirectly influenced by duration:  Many elements such as training, data, peculiar support 

equipment, parts obsolescence, and initial spares are often estimated as factors of the prime mission 

product (in our case, Missile Production).  Thus, as the production cost is influenced by duration, this 

impact is inherited by elements that are estimated based on a factor times the production cost. 

Table 2-1 identifies the cost estimating methods in the example cost model and how they are influenced by 

duration.  This handbook will provide focused guidance on how to apply uncertainty to the above methods.  

Table 2-1  Cost Modeling Approaches in the Example Model 

  

WBS Description Estimate Method Duration Sensitive

Missile System

    Engineering and Manufacturing Development

        Air Vehicle

            Design & Development [DurationBased] EMD_DesignDevPerMth*EMD_Duration Direct

            Prototypes [Factor for T1] EMD_Prod * ProdToEMDStepUpFact * Learning Time Independent

        Software [Analogy] ThirdPartyToolSWManMonths * SWLaborRate$ Time Independent

        System Engineering [Build-up] EMD_SEFTE * EMD_SELabRate$ * EMD_Duration Direct

        Program Management [Build-up] EMD_PMFTE * EMD_PMLabRate$ * EMD_Duration Direct

        System Test and Evaluation [Factor] EMD_STE_Fac * EMD_Proto$ Time Independent

        Training [Factor] EMD_Trng_Fac * EMD_AV$ Indirect

        Data [Factor] EMD_Data_Fac * EMD_AV$ Indirect

        Peculiar Support Equipment [Factor] EMD_SptEquip_Fac * EMD_Proto$ Time Independent

    Production & Deployment

        Air Vehicle

            Airframe* [Parametric CER: TRIAD] 25.62 + 2.101 * AirFrameWt  ̂0.5541 CIC Rate

            Propulsion* [Parametric CER: OLS Loglinear] 1.618 * MotorWt  ̂0.6848 CIC Rate

            Guidance* [Throughput] 100 CIC Rate

            Payload* [Parametric CER: OLS Linear] (30.15 + 1.049 * WarheadWt) * AdjustFactor CIC Rate

            Air Vehicle IAT&C* [Third Party Tool] IACO_HsPerUnit * MfgLaborRate$ CIC Rate

        System Engineering [Build-up] Prod_SEFTE * Prod_SELabRate$ * Prod_Duration Direct

        Program Management [Build-up] Prod_PMFTE * Prod_PMLabRate$ * Prod_Duration Direct

        System Test and Evaluation [Throughput] $1,250 per year Direct

        Training [Factor] Trng_Fac * AV_Prod$ Indirect

        Data [Factor] Data_Fac * AV_Prod$ Indirect

        Peculiar Support Equipment [Throughput] $7,634.27 Time Independent

        Initial Spares and Repair Parts [Factor] InitSpares_Fac * AV_Prod$ Indirect

* = CER to estimate the first unit cost for a rate affected unit CIC
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2.2.6 Role of Sensitivity Analysis on the Point Estimate 

A sensitivity analysis is a systematic approach used to identify the impact of potential changes to one or 

more of an estimate’s major input parameters on the total cost.  The objective is to vary input parameters 

over a range of probable values and recalculate the estimate to determine how sensitive the outcomes are to 

changes in the selected parameters. 

A sensitivity analysis chart is shown in Figure 2-3.  The example illustrates the cumulative effects of 

changes to EMD and Production cost drivers (see Section 5.2.3 for details).  Sensitivity analyses, while 

useful for finding cost drivers, are not always sufficient to quantify the program cost risk.  For example, each 

result shown in Figure 2-3 is merely a point estimate that does not convey the risk and uncertainty 

associated with changes to cost drivers.  (In contrast, eSBM is a type of a sensitivity analysis that does 

capture risk: see Section 5.2)  

  

Figure 2-3  Example of a Sensitivity Analysis Chart 

2.2.7 Role of Uncertainty Analysis on the Point Estimate 

The point estimate represents one possible estimate based upon a given set of program characteristics, cost 

method selection, and input variable selections.  The PE serves as the reference point on which the cost 

uncertainty analysis is anchored.  For any given element in the estimate, uncertainty may be determined via 

one of three approaches: 

 Objective (statistical analysis of relevant historical data) 

 Subjective (expert opinion) 

 Third Party Tools (separate models) 

2.3 UNCERTAINTY DISTRIBUTIONS 

2.3.1 Probability Distributions, Histograms and S-curves 

A probability distribution is used to define uncertainty in the model as it assigns probabilities to the possible 

outcomes of a random event.  A first step in assessing the behavior of collected data is to create a histogram. 
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A histogram is a bar chart where the y-axis is a count of the number of data points occurring within the width 

of each bar. The bars of a histogram are drawn so that they touch each other to indicate that the variable is 

continuous.  Figure 2-4 illustrates the concept with two sample sets.  Each sample set contains nine 

observations.  In Sample 1, there are nine unique and equally spaced points giving rise to one point per 

interval.  In Sample 2, more than one point is binned into several of the intervals and a shape takes form. 

  

Figure 2-4  Histogram Examples 

The frequency count for each bin can be transformed into percentages by dividing by the total number of 

sample points.  In this case, the y-axis becomes the probability of a value falling within each bin, with the 

aggregate probability of all bins equaling 1.  This type of histogram is often called the probability density 

function (PDF) plot.  Graphing the cumulative probability is called the cumulative distribution function 

(CDF) plot, but is more commonly known as the “S-curve”.  A convention to help distinguish between the 

two is that the PDF y-axis is labeled with values between 0 and 1 while the CDF is labeled with percentage 

values.  Figure 2-5  illustrates Sample 2 in PDF and CDF form. 

 

Figure 2-5  PDF and CDF Example  

While random numbers can be graphed into a histogram to determine if there is any pattern (distribution), a 

known distribution can be used to generate random numbers.  This is the core of the uncertainty simulation 

process.  Understanding uncertainty simulation begins by understanding histograms. 

A critical part of the construction of any histogram is determining how many intervals (bins) the data should 

be grouped into.  There is no standard approach, but there are several well-known options.  Table A-14 lists 

five popular options.  The Mann-Wald method (discussed in detail in Reference 8) is used by Crystal Ball 

and CO$TAT to determine the number of bins for the chi-squared goodness of fit test (see Section 2.4.3.5 

and Appendix A.9.5).  Mann-Wald-divided-by-two (Equation 2-1) is recommended for use as a first 

approximation of bin count for histograms and as the basis for the chi-squared goodness-of-fit test for 

samples less than thirty data points.  Some tools “roundup” and/or do not allow the number of bins to be less 

than a specific value like 6. 
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Equation 2-1  Mann-Wald / 2 Bin Count Equations 
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n
     Excel: Max(6, ROUNDUP(2*(2*ObsCount^2/NORMSINV(ChiSigLvl)^2)^0.2,0)) 

Where, n is the sample size 

Φ 
-1

 is the inverse standard normal distribution 

α is the level of confidence for the chi-squared test 

Equation 2-1 is the general form of the Mann-Wald / 2.  If the equation is evaluated at the 5% significance 

level, it reduces to 1.88n
0.4

 which is suitable for most cases. 

Mann-Wald/2 is recommended for use as a first approximation of bin count. 

2.3.2 Choosing and Defining Cost Model Probability Distributions 

There are a large number of possible distribution shapes defined in the literature and available through a 

variety of tools.  In an effort to promote consistency across program estimates, analysts are encouraged to 

limit their selection of distributions to those defined in Table 2-2
3
.  See Appendix A.6 for mathematical 

details on these distributions. 

Table 2-2  Recommended Uncertainty Distributions 

 

The order of the distributions in Table 2-2 is not arbitrary.  Figure 2-6 illustrates the frequency of each 

distribution found across 1400 fits of various cost data, factors, and CER residuals in Reference 80.  The 

                                                 
3
 See http://pages.stern.nyu.edu/~%20adamodar/New_Home_Page/StatFile/statdistns.htm for an alternative discussion on 

distribution selection, including a flow chart at the end of the article. 

http://pages.stern.nyu.edu/~%20adamodar/New_Home_Page/StatFile/statdistns.htm
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finding that lognormal dominates is consistent with the AFCAA CRUH recommendation that lognormal 

should be the default distribution.  Note that uniform was never found to be and normal was rarely found to 

be the best fit.  Also, because beta and triangular were so close to each other, triangular was placed ahead of 

beta due to its simplicity and popularity. 

 

In the absence of better information, choose lognormal as the distribution shape. 

In the absence of better information and the distribution is known to be left skewed, use betaPERT. 

 

Figure 2-6  Relative Frequencies of Distribution Shapes 

Lognormal distributions have a defined lower bound that is never less than zero.  They have an upper bound 

of infinity, thus providing at least some probability of a large cost overrun.  The skew of a lognormal
4
 is pre-

defined.  This handbook recommends that in the absence of better information, choose lognormal as the 

shape of the uncertainty distribution.  If it is known that the distribution is left skewed, betaPERT is 

recommended when there is no evidence to do otherwise.  

The empirical fit distribution in Table 2-2 is a good choice when no other distribution seems to fit the data 

particularly well.  This can often be the case when attempting to replicate distributions that combine the 

uncertainty from a variety of cost, schedule, and risk register elements or when trying to replicate third party 

tool results in a spreadsheet or ACE model.  Most tools refer to empirical fits as “custom” distributions.  

Details of the empirical fit approach can be found in Section 2.4.3.6. 

2.3.3 Operating and Support Probability Distributions 

Some agencies include failure analysis mathematics in their operations and support cost models to estimate 

the number of spares and/or maintenance actions.  A few of these distributions are introduced here.  For 

details on their specification and uses please see Reference 45 and 63.  These distributions include: 

 Poisson distribution can be used to define the number of failures in a specified time when the 

average number of failures is small.  It is also a useful distribution to estimate testing, inventory 

levels, and computing reliability.  The Poisson distribution is a discrete distribution that requires only 

a single parameter, the mean, to define the distribution.  A common use of the Poisson is to simulate 

the number of failures per year by using the inverse of the mean time between failures as the 

parameter. 

 Exponential distribution is a continuous distribution that can be used to estimate the time between 

failures.  The parameter in this case is the mean time between failures. 

                                                 
4
 All three tools (CB, @RISK, and ACE) use different conventions to describe a lognormal.  However, with care, the identical 

lognormal distribution can be successfully replicated in all three. 
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 Weibull distribution is a continuous distribution often used to estimate time between failures. A 

common approach is to assume a high failure rate at the beginning of life due to manufacturing errors 

(infant mortality), reducing to a constant (the design failure rate), and then increasing at the end of 

life (wear out). Infant mortality and wear out phases are often modeled with the Weibull distribution. 

2.3.4 Uncertainty Distribution Descriptive Statistics 

The descriptive statistics for any distribution are described in Appendix A.4.  Also, see Appendix A.5 for 

the definition of probability (or percentile).  Most distributions used in cost uncertainty analysis will have a 

mean and a median.  But not all distributions will have a mode, finite minimum, or finite maximum. Figure 

2-7 illustrates several descriptive statistics and two subjective points (low and high) that could be used to 

define the distribution.  Section 2.5.3 provides further guidance on the source and meaning of a low and high 

point in the distribution.  The probability (percentile) of these particular low and high values is shown.  For 

instance, there is an eight percent probability that a random draw from Figure 2-7 will return a number 

between 55.8 and 80.  It is important to distinguish between min/max, the absolute bounds of a distribution, 

and the low and high which will always have a percentile associated with them to uniquely define their 

location in the distribution. 

 

Figure 2-7  Distribution Parameters of a Notional Triangle 

2.3.5 Uncertainty Distribution Skew 

Since cost tends to overrun more than it under runs, it is not common for an element in a cost model to have 

a symmetric distribution, meaning an equal chance of an underrun or an overrun. Appendix A.4.5 provides 

the mathematical definition of skewness, the formal way to define distribution asymmetry.  It also describes   

a more simplified definition, skew, that we use in this handbook.  The area under the curve of any probability 

distribution is one (1.0).  We define skew as the measure of the area to the left of the mode.  For example, if 

the area to the left of the mode is 0.25 then the distribution is right skewed (most of the area is to the right of 

the mode).  If the area to the left is 0.75 then the distribution is left skewed. Skew follows the longest tail of 

the data.  This definition, skew, is easier to interpret and directly relatable to the cost analyst.  A skew of 0.25 

tells the analyst that 75% of the data is higher than the mode.  The skewness equivalent is 0.42, it is harder to 

calculate and not as easy to interpret.  See Appendix A.4.5 for details. 

Figure 2-8 presents several illustrations of left skewed, not skewed and right skewed distributions.  In each 

illustration the mode is labeled as the point estimate with the exception of the uniform distribution.  Since the 

uniform distribution has no mode, the point estimate shown on each uniform illustration is used as a 

reference point in order to illustrate left skewed, not skewed or right skewed relative to the point estimate. 
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Figure 2-8  Illustration of Distribution Skew 

All uncertainties should be data-driven rather than subjective, whenever possible. 

All distributions should be selected based on fitted data rather than subjective, whenever possible. 

2.4 OBJECTIVE UNCERTAINTY 

2.4.1 Overview 

Objective uncertainty is derived from the application of well-defined statistical processes on known 

outcomes
5
.  In the context of cost analysis, this begins with the collection and normalization of relevant 

historical data.  This handbook will address two objective methods for estimating uncertainty: 

 Developing parametric equations through regression analysis 

 Fitting distributions to normalized, historical data or CER residuals 

2.4.2 Uncertainty of Parametric CERs 

2.4.2.1 Types of Parametric CERs 

Parametric CERs are derived from regression analysis.  Regression analysis is a statistical technique to 

determine which, if any, independent variables (e.g., item characteristics) explain the variation of a 

dependent variable (e.g., item’s cost across a variety of projects).  How well parametric equations derived in 

this manner predict the source data provides a statistical, objective assessment of the uncertainty of the CER 

result.  The CER error is modeled either as an additive or multiplicative factor as illustrated in Figure 2-9 

(from Reference 13) where y is the cost of interest, f(x) is the CER functional form and ε is the error term.  

The error is measured by comparing the actual cost to the cost predicted by the CER for each data point used 

to create the CER.  Regression analysis seeks to minimize the CER error term.  For cost estimating, the 

multiplicative error term is preferred because cost error tends to scale with the estimate.  For a more detailed 

discussion please see Appendix A.8.4. 

                                                 
5
 The known outcomes themselves can be uncertain since there is no guarantee that the dataset has been normalized properly or is 

fully applicable to the estimate.  However, for the purposes of developing parametric CERs, this data is often treated as known. 
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Figure 2-9  Additive and Multiplicative Functional Forms 

The most common regression methods are described in detail in Appendix A.7 and summarized here: 

 Ordinary Least Squares (OLS), Unit Space:  OLS solves for linear relationships and minimizes an 

additive error term.  An example of an OLS derived CER is:  Cost = 30.15+1.049*WarheadWt. 

 Ordinary Least Squares, Log Space:  OLS solves for linear relationships and minimizes an additive 

error term in log space (regression performed on the log of the data).  The error term is multiplicative 

in unit space. An example of a Log Linear OLS derived CER is: Cost=1.618*MotorWt^0.6848. 

 Minimum Unbiased Percentage Error (MUPE):  Derives CERs with multiplicative error terms 

directly in unit space.  An example of a CER that cannot be derived using OLS but can be derived 

with MUPE is:  Cost= 25.62 + 2.101 * AirFrameWt ^ 0.5541 (known as a triad form). 

 Zero Bias Minimum Percent Error (ZMPE):  ZMPE is another method that can derive CERs with 

multiplicative error terms directly in unit space.  Like MUPE, it can be used to derive any CER 

functional form, including those that OLS cannot derive. 

2.4.2.2 Choosing the Parametric CER Distribution Shape and Point Estimate Location 

Regardless of the CER method employed, even if the CER inputs (independent variables) are known 

precisely, the CER will return a result that is not certain.  Depending on how the CER is developed, the error 

is either additive or multiplicative (a factor of the CER result).  In cost estimating, we expect the potential 

error of the CER to scale with the CER result thus making multiplicative error terms the preferred approach 

for modeling the CER uncertainty (see Appendix A.8.4). 

Two critical decisions when applying uncertainty to CERs are: selecting the uncertainty shape and defining 

where the point estimate falls within the distribution.  Both of these decisions should be based upon an 

understanding of the regression method used to develop the CER.  It is also possible to fit a distribution to 

the residuals (see Section 2.4.3.8). Point estimate location considerations for the most common regression 

methods are: 

 OLS Linear: A premise of the OLS method is that the errors will be normally distributed in fit space.  

The OLS linear CER result is the center (mean, median, mode) of the normal distribution. 

 OLS Log Space: Applying OLS in log space yields a multiplicative lognormal uncertainty in unit 

space.  The point estimate result is the median, not the mean of the lognormal uncertainty. 

 MUPE:  The MUPE CER delivers the mean; it has zero proportional error for all points in the CER. 

Goodness-of-fit measures can be derived to judge the quality of the model if the CER error is 

assumed to be normal (a common assumption). 

 ZMPE: The ZMPE method also delivers the mean and zero proportional error for all the data points 

in the CER. Distribution shape is arbitrary; however, some analysts prefer using lognormal. 

Two critical decisions:  Select the uncertainty shape and define where the point estimate falls. 
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2.4.2.3 Calculating the Prediction Interval  

CER error terms provide an average error for the equation.  This average error needs to be adjusted to 

account for the number of sample points, degrees of freedom, and where the estimate is located in the data 

set.  Most statistical software packages will do this calculation for OLS CERs and some will address MUPE.  

For details on how to calculate simple OLS CER prediction intervals manually, see Appendix A.8.5 and 

A.8.8.  If the CER was generated using a statistical tool, or if the detailed statistical results are available, this 

information should be used to calculate the prediction interval. 

The prediction interval is the preferred source of distribution bounds. 

2.4.2.4 Estimating the Prediction Interval 

When obtaining a prediction interval is not possible, the CER’s standard error (SE, also called standard error 

of the estimate SEE, see Appendix A.1.9) may be used to obtain objective uncertainty.  This may arise in the 

absence of the data and the time to create the CER and its prediction interval, or the lack of detailed 

statistical results from a published CER.  Also known as the CER standard deviation, the SE alone is 

generally not sufficient to define CER uncertainty. An adjustment is required to account for the location of 

the point estimate within the dataset used to generate the CER.  As the estimate moves away from the center 

of the CER dataset, the spread of the prediction interval will increase. 

Table 2-3 contains the SE multipliers based on the sample size and the independent variable value’s position 

relative to the mean of those used to create the CER.  Each multiplier in the table was computed using 

Equation A-54 contained in Appendix A.8.3 and published in Reference 15. To use the table, determine: 

 the size of the sample used to generate the CER.  If there is only a qualitative assessment, use:  

small = 5, medium = 15, large = 25. 

 the distance from CER center:  this is the distance the CER input is from the mean of the 

independent variable as a ratio to its standard deviation.  If it is not possible to make this calculation, 

the ratio can be estimated by judging how similar the project is to the source data for the CER. 

Table 2-3  Factors to Adjust CER SE Sample Size and Sample Relevance 

    

Should there be no basis for determining sample size or distance from the data center, the recommended 

default multiplier is 1.2 as this is the average of the multipliers in the first three columns of Table 2-3. 

If the only parameter to define the distribution is the standard deviation or standard error,  

multiply it by 1.2 to estimate the prediction interval. 

Number of Data Points in Sample

5 10 15 20 25 30

0.00 1.095 1.049 1.033 1.025 1.020 1.017 Very Similar

0.25 1.101 1.052 1.035 1.026 1.021 1.018

0.50 1.118 1.061 1.041 1.031 1.025 1.021

0.75 1.146 1.075 1.051 1.038 1.031 1.026 Similar

1.00 1.183 1.095 1.065 1.049 1.039 1.033

1.25 1.230 1.121 1.082 1.062 1.050 1.042

1.50 1.285 1.151 1.103 1.078 1.063 1.053 Dissimilar

1.75 1.346 1.186 1.127 1.097 1.078 1.066

2.00 1.414 1.225 1.155 1.118 1.095 1.080

2.25 1.487 1.267 1.185 1.142 1.115 1.096 Different

2.50 1.565 1.313 1.218 1.167 1.136 1.114

2.75 1.647 1.362 1.253 1.195 1.159 1.134

3.00 1.732 1.414 1.291 1.225 1.183 1.155 Very Different
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Simulation tools will allow a normal or lognormal distribution to be defined using different parameters.  

Typically, the mean and standard deviation are sufficient but in situations where the CER result is not the 

mean or when the item being estimated is different to those in the CER’s dataset, an adjustment must be 

made.  A CER result may not be the mean (could be the median, mode or something else). The CER error 

expressed as SEE is a measure of the CER average error.  If the prediction interval is not available, but the 

CER SEE is available, the steps illustrated in Table 2-4 can be used to derive the OLS CER lognormal error 

distribution parameters (mean and standard deviation).  The CER SEE (measure of average error) needs to be 

adjusted for the specific point estimate. The calculation steps depend on how the SEE is reported (log or unit 

space).  The SEE adjustment factor used in the example calculation is drawn from Table 2-3 based on the 

CER being constructed from 10 data points and an assessment that the program being estimated is 

“different” from the programs in the CER source data. 

Table 2-4  Template to Derive an Estimate’s Lognormal Distribution Parameters 

 

2.4.2.5 Summary of How to Define Parametric Objective Uncertainty 

Overall, the order of preference for determining CER uncertainty is: 

 Statistical Tool:  Use the statistical tool that is used to perform the regression analysis to generate a 

prediction interval for the estimate 

 Calculate the prediction interval: If, in addition to the CER equation, detail statistical results of the 

regression are available, use the mathematics of Appendix A.8.5 or A.8.8 to calculate a prediction 

interval 

 Estimate the prediction interval: If only the CER equation and its standard error are available, use 

the guidance of Appendix A.8.3 to estimate a standard error adjusted for the particular estimate 

2.4.3 Uncertainty Based on Fitted Distributions 

2.4.3.1 Overview  

Fitting, rather than assuming, a distribution to data that defines the uncertainty of an element in the model is 

attractive as it is an objective, rather than a subjective, analysis of the element in question.  However, the 

Range 

Name
Value Equation

Given the Following Information:

Given: Parametric CER Result CERResult $60.91 UC1 = 1.618 * 200 ^ 0.6848; where MotorWt = 200

Mean Log Space MeanLogSpace 4.1095 LN(CERResult)

Interpretation of CER Result 50.0% CER result is the median of the log normal distribution

Determine SEE Multiplier using Table 2-3 (if data is available, use formulas in A-8.3):

SEE Multiplier SEEAdjust 1.267 10 data points, Project is "different" from CER source data

CER error (SEE) given in LOG space, calculate the Mean and SEE in unit space to model a lognormal distribution:

Given: SEE Log Space SEELSpace 0.1413

Calculate:

Adjusted SEE Log Space SEELSpaceAdj 0.1790 SEELSpace (0.1413) multiplied by SEEAdjust (1.267)

Mean Unit Space MeanUnitSpace $61.90 EXP(MeanLogSpace+SEELSpaceAdj 2̂/2)

Adjusted SEE Unit Space $11.17 SQRT((EXP(SEELSpaceAdj 2̂)-1)*MeanUnitSpace 2̂)

CER error (SEE) given in UNIT space, calculate Mean and SEE in unit space to model the lognormal distribution:

Given: SEE Unit Space SEEUSpace $8.737

Calculate:

SEE Log Space SEELSpace 0.1413 SQRT(LN((1+SQRT(1+4*(SEEUSpace/CERResult) 2̂))/2))

Adjusted SEE Log Space SEELSpaceAdj 0.1790 SEELSpace (0.1417) multiplied by SEEAdjust (1.267)

Mean Unit Space MeanUnitSpace $61.90 CERResult*EXP((SEELSpaceAdj 2̂)/2)

Adjusted SEE Unit Space $11.17 SQRT((EXP(SEELSpaceAdj 2̂)-1)*MeanUnitSpace 2̂)
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process of performing a best-fit analysis has many subjective steps that highly influence the outcome.  The 

following sections of the handbook outline the key steps and recommend an approach that brings some level 

of consistency to the process.  Two utilities are available with the CSRUH, one of which is wholly contained 

within Excel.  See Section 7.1.1 for details. 

There are two specific targets for distribution fitting: 

 CER Residuals:  While the predictive statistics obtained from common regression methods yield 

objective measures of dispersion, the distribution shape is an assumption rather than a fact.  An 

objective method without assumptions is to determine the best-fitting distribution to the CER’s 

residuals. 

 CER Inputs:  There is a need to model the uncertainty of the independent variables driving CERs.  A 

common approach is to collect representative values, use their mean as the point estimate and assume 

a normal or t-distribution and the sample standard deviation to define the uncertainty.  A better 

approach is to fit a distribution to the data.  

2.4.3.2 Defining the Cumulative Probability of the Input Data 

In order to compare a fitted distribution to the source data, it is necessary to first assign a cumulative 

probability to each data point.  There are many differing opinions in the literature on the best way to perform 

this calculation.  When the number of data points is large, there is little difference between the methods.  But 

when the number of data points is small, as is generally the case in cost estimating, this calculation will 

highly influence distribution fitting results.  If the intent is to compare results across distribution fitting 

packages, one must first understand how they assign probability to the source data as this produces the 

reference against which the fit is performed. 

Table 2-5 lists several common methods for estimating the probability of each data point in the data set.  The 

cumulative probability formulas use i= the rank order of the data point and n= the number of observations. 

Table 2-5  Methods to Estimate Cumulative Probability 

 

Each method is applied to the example model Motor and Airframe weight data in Table 2-6.  Selecting a 

method depends on the analyst’s judgment about the certainty of the observed extremes. 
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Table 2-6  Application of Cumulative Probability Methods Examples  

  

Method 3 and the correction for continuity (CoC) method (Reference 12) split the difference between the 

two extreme approaches.  However, as can be seen in the shaded cells of Table 2-6 for Airframe Weight, the 

CoC method returns a probability for 480 halfway between the points below and above as 480 was repeated 

twice in this dataset.  The other methods apply the cumulative probability associated with the first occurrence 

of the value. 

As can be seen in Figure 2-10, Method 1 and 4 bound the possibilities and fitting the distribution for both 

could yield different results.  Choosing the approach to calculate cumulative probabilities is ultimately based 

on whether or not the observed minimum and maximum are considered to be sufficient extremes.  If there is 

no basis to make a determination, Method 3 with COC is the recommended default approach. 

 

Figure 2-10  Comparing Methods for Estimating Probability 

2.4.3.3 Best Fit 

There are many commercial tools available that will find the distribution that best fits a given sample of 

observations.  Each tool uses a different approach and offers different options. These tools will generate 

slightly different results given the same dataset and results may also change as newer versions are released.  

Tools such as ACEIT and @RISK will perform fits on as few as six and five data points respectively.  Other 

tools such as Crystal Ball require fifteen or more data points.  The actual number of data points required is a 

function of the number of parameters that need to be estimated.  A normal distribution, for instance, requires 

two.  A beta distribution requires four.  In both cases, a degree of freedom is lost in the curve fitting process.  

Therefore, at least six data points are required to perform an unconstrained fit using the beta distribution 

while retaining one degree of freedom.  This is necessary to develop a goodness-of-fit statistic.  

Method 

1

Method 

2

Method 

3

Method 3 

with CoC
NIST

Method 

4

Observation

Motor 

Wgt
i/n (i-1)/(n-1) (i-.5)/n

( i-1 + 

0.5*F req)) /  n i/(n+1) (i-1)/n

System #1 90 10% 0% 5% 5% 9% 0%

System #2 112 20% 11% 15% 15% 18% 10%

System #3 130 30% 22% 25% 25% 27% 20%

System #4 170 40% 33% 35% 35% 36% 30%

System #5 195 50% 44% 45% 45% 45% 40%

System #6 210 60% 56% 55% 55% 55% 50%

System #7 225 70% 67% 65% 65% 64% 60%

System #8 290 80% 78% 75% 75% 73% 70%

System #9 320 90% 89% 85% 85% 82% 80%

System #10 340 100% 100% 95% 95% 91% 90%

Method 

1

Method 

2

Method 

3

Method 3 

with CoC
NIST

Method 

4

Observation

Airframe 

Wgt
i/n (i-1)/(n-1) (i-.5)/n

( i-1 + 

0.5*F req)) /  n i/(n+1) (i-1)/n

System #1 230 10% 0% 5% 5% 9% 0%

System #2 300 20% 11% 15% 15% 18% 10%

System #3 330 30% 22% 25% 25% 27% 20%

System #4 440 40% 33% 35% 35% 36% 30%

System #5 480 50% 44% 45% 50% 45% 40%

System #6 480 50% 44% 45% 50% 45% 40%

System #7 620 70% 67% 65% 65% 64% 60%

System #8 720 80% 78% 75% 75% 73% 70%

System #9 790 90% 89% 85% 85% 82% 80%

System #10 800 100% 100% 95% 95% 91% 90%
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2.4.3.4 Fit Constraints  

It is not unusual for the best-fitting distribution to not capture the entire sample.  For instance, the lower or 

upper bound of a triangular or beta distribution fit may be higher or lower than one or more sample points.  

The fit, however, could be constrained to ensure the distribution captures or “surrounds” the sample data. 

Even when none of the sample points are below zero, it is not unusual for a best-fit distribution to have a tail 

that stretches significantly into the negative region.  Mathematically, this can be absolutely sound and 

correct.  Pragmatically, especially in the cost analysis domain, such distributions can introduce undesirable 

effects in a simulation.  Again, the fit can be constrained to ensure the lower or upper bound does not exceed 

a specific value (either high or low). 

The several thousand fits developed for the Air Force Cost Risk and Uncertainty Metrics Manual 

(CRUAMM), Reference 80 and Attachment 1, were performed with the surround and a minimum lower 

bound of zero constraints in place.  To support research that required thousands of curve fits, the Air Force 

developed a simple distribution fitting utility in Excel to fit lognormal, normal, triangular, and beta 

distributions to selected data.  The utility offered two objective functions to minimize: Sum of Squared Error 

(SSE) and Sum of Squared Percent Error (SSPE).  Details of this tool can be found in Reference 72.  This 

utility is used to support curve fitting for examples in this handbook.  Note the fits developed for the 

examples in this handbook were unconstrained because none of the aforementioned bounds were present. 

Run the fit process unconstrained first and then assess the need to run a constrained fit. 

 

2.4.3.5 Goodness-of-Fit 

Finding the best-fitting distribution through a minimum error optimization does not necessarily mean the 

best fit is statistically significant.  There are several goodness-of-fit metrics to measure the statistical 

significance of the fit.  Three of the most popular ones are (see Appendix A.9 for details): 

 Kolmogorov-Smirnov (K-S): The sample CDF is compared to the fitted CDF and the maximum 

vertical distance between them is found.  This generally happens in the middle, making K-S a 

preferred test when interested in accuracy at the center of the distributions.  

 Anderson-Darling (A-D): Measures the total area between the sample and fit CDF and with 

weightings that can focus on the fit in the tails.  A-D is a preferred test when accuracy in the tails is 

needed. 

 Chi-Squared (also Chi^2): Compares the sample frequency to the fitted frequency by bin (columns 

in a histogram).  This is the most common test because it is the easiest to calculate, is fast, and can 

calculate significance for any fitted continuous or discrete distribution.  It does have a weakness.  chi-

squared is sensitive to the number of segments (bins) used to stratify the data.  There are no clear 

guidelines for selecting the number and location of the bins.  However, the number of sample points 

needs to be greater than the number of bins.  In Section 2.3.1, Mann-Wald/2 is recommended as the 

first approximation. 

Both K-S and A-D are limited in the number of distributions for which the significance of the fit can be 

calculated (i.e., cannot calculate the significance of a beta and triangular fit).  For this manual, the chi-

squared was chosen because it is the only available test that would produce a set of comparable p-values 

across all fitted distributions.  However, it is recommended that all goodness-of-fits statistics be considered.  

ACE performs the chi-squared test, Crystal Ball performs all three and @RISK 6.0 provides all three plus 

two other goodness-of-fit measures:  
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 An Information Criterion (AIC):  is used to measure the relative goodness-of-fit for a statistical 

model. AIC is founded in information theory, offering a relative measure of the information lost 

when a given model is used to describe reality.  This criterion was developed by Hirotsugu Akaike 

under the name of "an information criterion" (AIC) and first published in 1974 (Reference 4). 

 Bayesian Information Criterion (BIC): was developed by Gideon E. Schwarz in 1978 (Reference 

6). The BIC is also used for model selection among a finite set of models and is closely related to the 

AIC.  Just like the AIC, the BIC statistic is also derived from the log-likelihood function. Both 

statistics take into account the number of estimated parameters of the fitted distribution.  However, 

the BIC penalizes more strongly than AIC for the number of estimated parameters. 

It is important to note, however, that AIC and BIC statistics do not provide a measure of the statistical 

significance of a particular fit.  That is, the actual values of the AIC and BIC statistic do not have meaning, 

except in relative terms, when comparing one proposed distribution type to another.  This is also the case for 

the K-S and A-D test for many distributions such as triangular and beta.  chi-squared is the only test that will 

provide a measure of statistical significance for any distribution, but its results are heavily influenced by the 

number of bins selected to perform the test. 

2.4.3.6 Empirical Fit 

If no fitted distribution is satisfactory, an empirical distribution that simply represents observed data is an 

acceptable alternative.  This is a cumulative distribution function with incremental steps based on individual 

data points instead of a theoretical probability distribution with parameters estimated from the data. The 

general approach is assumption-free except for the treatment of the extreme boundaries.  To create an 

empirical fit, rather than fit distributions to the data, simply enter each data point and its estimated 

probability into the simulation tool.  Keep in mind that working with the empirical distribution does not 

involve a statistical procedure so no statement about goodness-of-fit is being made. 

2.4.3.7 Suggested Fit Process 

As described in the previous sections, there are many considerations when performing curve fit analysis:  

 Minimization:  Some tools offer more than one objective function for minimization, for instance 

choosing between SSE and SSPE 

 Goodness-of-fit test:  One or some combination of the available tests could be used.  But the test and 

its criteria should remain constant through all comparisons.  For instance, using chi-squared with a 

significance level of five percent (5%). 

o For chi-squared, simply changing the number of bins used to perform the test could yield an 

acceptable result 

 Matching parameters: The best fit with acceptable goodness-of-fit may still result in a distribution 

with a mean, standard deviation, or visual (graphic) comparison that is undesirable.  While not 

sufficient to reject the fit, such issues may be motivation to look at the second or third choice. 

 Outliers: It may be necessary to consider removing outliers, a course of action that should be 

discouraged unless there is a compelling reason to do so.  Improving the fit, on its own, is not a 

reason to remove an outlier. 

 Favor basic distributions:  Just because a distribution is ranked best does not mean it is the only 

acceptable choice.  Examination of the parameters and the visual (CDF or PDF) may demonstrate 

that several distributions are all nearly as good.  In such cases, it is recommended that if lognormal, 

triangular, normal, beta, betaPERT, or uniform is nearly as good, then select one of them.  They are 
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easier to work with and easier to explain.  However, if another distribution is a clear winner that is 

not one of them (a basic distribution), it should be given serious consideration. 

 Empirical Fit:  If the data follows a distribution with more than one mode or simply does not match 

any common distribution shape, consider creating an empirical fit directly in the simulation.  In 

Crystal Ball this is the custom distribution; In @RISK there is the RiskCumul function; And in ACE 

it is called the Custom CDF. 

In order to bring consistency to the process, a flow chart was developed in Reference 80.  A variation is 

presented in Figure 2-11 as a place to start for agencies to develop their own standard. 

 

Figure 2-11  Distribution Fit Process 

2.4.3.8 Fitting Distribution to Regression Residuals 

As stated earlier, the regression method also includes an assumption for the distribution of the CER 

uncertainty.  However, it is possible to fit (rather than assume) the shape and bounds for the regression 

equation from its residuals.  The first step is to divide the actual data point value by the predicted data point 

value.  For the example model, this was performed on the Airframe CER results as shown in Figure 2-12.  

The upper-left panel of the figure presents the data and the upper-center panel presents the fitted equation 

and scatter plot.  The upper-right panel shows the residuals sorted in ascending order along with the 

computed cumulative probability using Method 3 with the CoC formula from Table 2-5.  The bottom panel 

shows the results of the distribution fitting process and the resulting S-curve for each candidate distribution.  

The fits were ranked based upon the fit SEE.  In this case triangular, ranked number 1, passed the goodness-
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of-fit test, and yielded a mean and standard deviation very close to the sample.  In order to pass the chi-

squared goodness-of-fit test, the number of bins had to change from Mann-Wald/2 to Mann-Wald (6 bins or 

greater was sufficient to pass).  The triangular distribution was used to model the Airframe CER uncertainty. 

  

Figure 2-12  Fitting a Distribution to Example CER Residuals 

2.4.3.9 Fitting Distribution to a Throughput or CER Input  

The process is also applicable to measuring the spread in a single variable of a dataset for which there are no 

available explanatory variables.  In these cases it is common to use the median (or mean) value as a 

throughput estimate for the value in the cost model. Again, the shape and bounds of the throughput method 

can be determined by fitting a distribution to the values.  For the example model this process was used to 

estimate Production Peculiar Support Equipment (PSE) cost.  The normal curve was the best fit for PSE as 

shown in Figure 2-13.  Figure 2-12 and Figure 2-13 have similar types of tables and plots.  However, the 

CDF in Figure 2-13 is computed directly from the data values (PSE $), while the CDF in Figure 2-12 is 

computed from residuals.  To model the PSE cost uncertainty as a multiplier to the median point estimate of 

7,580, divide the parameters by 7,580.  
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Figure 2-13  Fitting a Distribution to a Throughput Example 

2.4.4 Inheriting Uncertainty from One Model to Another 

Often when an overall program estimate is assembled, the estimated cost for some elements may be obtained 

via separate and distinct cost models.  These may be third-party tools whose inner workings are closed to the 

analyst, such as SEER or True Planning.  These may also be transparent models configured separately due to 

organizational needs or modeling expediency or a portfolio of programs.  For example, a program’s sensor 

subsystem may be estimated via a stand-alone radar cost model.  In such situations it is recommended that 

the uncertainty distribution inherent in those models be carried forward into the aggregate model.  Simply 

multiplying a third-party tool’s point estimate result by a “management reserve factor” is discouraged.  The 

third-party cost result should be treated as a random variable with uncertainty just like all the other estimated 

values in the model. 

When a given cost element is modeled using a separate model, apply uncertainty to each of the elements in 

that model consistent with the instructions of that model’s user manual and the guidance discussed in this 

handbook.  Popular parametric third party tools provide sufficient simulation results to allow the analyst to 

replicate the uncertainty in the aggregate model.  

There are at least three methods available: 

Sample LogNormal Normal Triangular Beta Uniform

Mean 7,634.2727 7,668.7976 7,634.2727 7,635.7767 7,642.8685 7,634.2727

StdDev 2,047.5470 2,057.5933 2,040.9037 1,969.0556 2,031.4244 1,878.8132

CV 0.2682 0.2683 0.2673 0.2579 0.2658 0.2461

Min 3,909.0000 3,047.7122 -1,206.7498 4,380.0727

Mode 6,909.4256 7,634.2727 7,195.7043 7,375.0091

Max 11,635.0000 12,663.9137 26,548.9502 10,888.4727

Alpha 12.6081

Beta 26.9357

Data Count 11 % < 0 = 0.01% None 0.00% None

Standard Error of Estimate 371.6543 354.4826 407.5106 396.8587 616.0862

Rank 2 1 4 3 5

SEE / Fit Mean 4.85% 4.64% 5.34% 5.19% 8.07%

Chi^2 Fit test 5 Bins, Sig 0.05 Good (83%) Good (83%) Good (55%) Unknown Good (21%)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

3,909 4,875 5,841 6,806 7,772 8,738 9,704 10,669 11,635 12,601

F
re

q
u

e
n

c
y

LogNormal (2) Normal (1) Triangular (4) Beta (3) Uniform (5)

0

10

20

30

40

50

60

70

80

90

100

0 2,000 4,000 6,000 8,000 10,000 12,000 14,000

C
D

F

Variable 1

Normal (1) Triangular (4) Beta (3) Uniform (5) Sorted Data

PSE $ CDF

System #1 3909 5%

System #3 5832 14%

System #10 6369 23%

System #6 6917 32%

System #11 7142 41%

System #4 7580 50%

System #2 7641 59%

System #8 8228 68%

System #5 9128 77%

System #9 9596 86%

System #7 11635 95%

Median 7580

0

2000

4000

6000

8000

10000

12000

14000

0 1 2 3 4 5 6 7 8 9 10 11

P
SE

 (
FY

1
4

K
$

)

System #



 Joint Agency Cost Schedule Risk and Uncertainty Handbook 

 . 28 

 Custom Based on Extracted Simulation Data:  This is the most accurate approach.  Simply extract 

the simulation trial data from the third party tool and use it to create a custom distribution.  Some 

tools limit the number of trials they can import (ACE, for instance, is limited to 10,000). 

 Custom Based on Extracted Percentile Results:  As demonstrated in Reference 67, this is a very 

easy way to accurately replicate a simulation result.  Extract percentile results from the third party 

tool and use them to define a custom distribution in the aggregate model.  The more results that are 

exported, the greater the accuracy.  Twenty data points (every five percent) is normally sufficient. 

 Lognormal Based on Two Values:   All the simulation tools will generate a lognormal distribution 

from two curve values.  In the absence of more detailed information, a reasonable fit can be achieved 

by extracting the median and the 85% value (Reference 67).  An alternative is to extract the mean 

and standard deviation from the product’s simulation results. 

Once the third-party tool’s resultant distribution is entered into the host cost model, assign appropriate 

correlations with other elements. 

When using separate models, it is recommended that the uncertainty distribution inherent in those models be 

carried forward into the aggregate model.   

2.5 SUBJECTIVE UNCERTAINTY 

2.5.1 Overview 

This section applies to every element in the cost estimate where objective uncertainty distributions are not 

available.  Guidance for choosing the distribution shape is provided in Section 2.3.2.  In addition to shape, 

distributions are characterized by parameters describing their dispersion and skewness. Subjective dispersion 

parameters are commonly the low and high bounds of the value in question.  Eliciting subjective assessments 

of standard deviation, probability or some other measure of variation is challenging.  This section, therefore, 

focuses on how to interpret the lower and upper bounds obtained from expert opinion. 

2.5.2 Elicitation of Subjective Bounds from Subject Matter Experts (SMEs) 

Ideally, distribution parameters are developed from an objective assessment of relevant historical data as 

described in the prior section.  Often, however, it is necessary to rely on informed opinion.  The analyst 

generally has to resort to expert judgment, such as that possessed by engineers, managers, and other 

knowledgeable people.  This process is called elicitation.  It can be difficult to do and subject to numerous 

biases.  Over-optimism can be traced both to cognitive biases, which are errors in the way the mind 

processes information, and to organization (motivation) pressures.  Some motivational and cognitive biases 

are listed in Table 2-7. 

SME predictions based upon an assessment of their own capabilities, experiences, and expectations can be 

tempered with statistical analysis of relevant historical data.  Such data provides the SME with a reality 

check that should have a positive influence on their intuitive view of the situation. 

An “inside view” is one that a SME may gravitate to spontaneously.  It is when the estimate is based on a 

tight focus of the project at hand: resources, obstacles, scenarios, and extrapolating current trends.  Even the 

most conservative “inside view” estimates tend to be exceedingly optimistic.  An “outside view” is based 

upon an examination of historical data from completed projects similar to the one under consideration.  

Using that information as the basis to build a distribution of possible outcomes, the SME can be asked to 

identify the position of the current project in the distribution.  The concept of an “inside view” versus an 

“outside view” is postulated and discussed in detail in Reference 34. 
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Table 2-7  Motivational and Cognitive Bias 

 

As an additional point of view, the Association for the Advancement of Cost Engineering International 

(AACEI), in Reference 97, lists the following biases, many of which are listed in Table 2-7.  

 Confirmation Bias: Gather facts that support certain conclusions; disregard other facts 

 Premature Termination: Accept the first alternative that looks like it might work 

 Inertia: Keep thought patterns that we have used in the past despite new circumstances 

 Selective Perception: Screen-out information that we do not think is important 

 Optimism Bias: See things in an unjustifiably positive light 

 Recency: Place more attention on more recent information 

 Repetition Bias: Believe what we are told most often and by the most different sources 

 Anchoring: Unduly influenced by initial information; shapes our view of later information 

 Groupthink: Peer pressure to conform to the opinions held by the group 

 Escalating Commitment: Increase support of a decision over time (over-value sunk costs) 

 Attribution Asymmetry: Attribute success to our abilities; attribute failures to bad luck 

Best practices for elicitation include: 

 Have historical minimum, maximum, and averages on hand for the discussion 

o Do not initially share with the expert to avoid unintended anchoring 

o As the dialog progresses, this will provide further context to the discussion 

o Do not use it to bludgeon the expert, but do use it to challenge or support estimates 

 Use multiple experts 

 Ask for an upper and lower value. Encourage brainstorming for reasons why the range could be 

larger, especially in the upper direction. 

 Encourage the dialog to identify the value at which the outcome has a one in five chance of being 

lower than, or the value that has one in five chance of being higher than the estimate.  Such a dialog 

makes the participants determine not only the bounds but also their interpretation. 

 Seek the most-likely value near the end of the discussion 

 Select a distribution shape based on the skew and firmness of the bounds.  Lognormal is suggested as 

the default choice in the absence of compelling arguments for another shape.  Refer to Table 2-2 for 

further guidance on selecting a distribution shape. 
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 In the absence of better information, treat bounds as the 70-percent interval.  For symmetrical 

distributions use the 15/85 percent boundary interpretation (see Section 2.5.3 for details).  For 

skewed distributions, consider skewing the bound interpretations as shown in Section 2.5.4. 

 Crosscheck and, when appropriate, challenge experts’ inputs against historical experience.  

Characterize adjustments with meaningful project comparisons derived from relevant historical data 

(i.e., challenge a software uncertainty assessment of +/- 50% with several relevant, real life examples 

where 300% or more growth was experienced).  Ideally, prepare for elicitation discussions by having 

on hand meaningful cross-checks based upon well known, real-life examples. 

 Iterate the evolving conclusions with the experts as needed (see Reference 98 and 100 for details) 

2.5.3 Interpretation of Bounds Obtained Through Subjective Assessment 

The low and high bounds for subjective uncertainties obtained from experts need to be interpreted.  

Reference 5, reprinted in Reference 71 observed that experts rarely identify 60% or more of the possible 

uncertainty range and never did better than 70%.  The impact of interpreting the lower/upper bound to be the 

15%/85% without adjustment (i.e. 70% of the total range) on a triangular, normal, and lognormal 

distribution is illustrated in Figure 2-14 and Figure 2-15.  The narrower distribution illustrates the 

distribution shape if the expert bounds are taken as “absolute,” which is rarely the case (for the normal and 

lognormal illustration, “absolute” is interpreted as 3 standard deviations, or 99.9% of the possible range).  

The broader shape is the one that could be implied by the bounds obtained from the expert, if there is no 

adjustment for skew.  For the lognormal, since it is not symmetrical, only the upper or lower bound can be 

defined.  In Figure 2-15, the lognormal is shown when the expert upper bound is assumed to be at the 85 

percentile. 

   

Figure 2-14  Impact of Unadjusted Bound Interpretation on a Triangular Distribution 

 

    

Figure 2-15  Impact of Bound Interpretation on a Normal and Lognormal Distribution 
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2.5.4 Adjusting Subjective Distribution Bounds for Skew 

Reference 5 (reprinted at Reference 71) suggests that the 30% additional uncertainty should be applied 

symmetrically.  Doing so, however, changes the skew of the final distribution from the one obtained from the 

expert.  A recommended refinement (see Reference 24) is to adjust the low and high bound interpretation to 

retain the total probability captured by the expert and to also maintain the original skew.  In this discussion, 

skew is defined as area to the left of the mode divided by the total area of the distribution.  For a 

mathematical discussion of skew, see Appendix A.4.5. 

Table 2-8 shows the sequence of steps to adjust the low and high probabilities to retain skew (see Section 

2.3.5 for a definition of skew).  Triangular and uniform are solved using the same mathematics.  There is also 

a closed form solution for betaPERT if the low/high bounds are symmetrical.  Otherwise, Excel solver is 

used to solve for the betaPERT minimum to ensure the skew calculated from min/mode/max is the same as 

low/mode/high.  The maximum is calculated as a function of the betaPERT minimum (note that the 

betaPERT low/high probability does not stray far from symmetrical).  An Excel utility to perform this math 

is available with this handbook (see Section 7.1.2). 

 

Table 2-8  Template to Calculate Adjustment for Skew  

  

Figure 2-16 illustrates how the example triangular distribution from Figure 2-14 is adjusted to maintain the 

skew. 
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Figure 2-16  Triangular Distribution Adjusted to Maintain Original Skew 

It is recommended that subjective bounds are adjusted for skew when using triangular, uniform or betaPERT.  

Additionally, the expert that provided the bounds should be consulted to verify the results are reasonable. 

Unless there is evidence to do otherwise, request and interpret subjective bounds (expert opinion) as the 70% 

range and adjust for skew when using triangular, uniform or betaPERT.  

2.5.5 Last Resort Subjective Uncertainty Guidance  

When the analyst is unable to develop objective bounds from data, unable to obtain subjective bounds from 

Subject Matter Experts (SME) and unable to find a relevant document to reference, the analyst’s own 

subjective designations of low, medium, and high uncertainty are a last resort.  Prior to the release of the 

AFCAA CRUH (Reference 55), using +/- 5% of the point estimate was seen in many estimates.  This is 

almost always unacceptably narrow in the cost analysis environment.  Experts supporting the AFCAA 

CRUH reluctantly agreed to characterize low/medium/high distributions based on their observation that the 

CVs of regressed CERs tend to fall in the 0.15 to 0.35 range (good to not-so-good fits) for many 

commodities.  For space systems, however, CVs of 0.45 and above are not uncommon.  AFCAA has since 

performed a study, the Cost Risk and Uncertainty Metrics Manual (Reference 80).  In general, that study 

found that CVs at lower levels in the WBS tend to be much wider.  This finding is also supported by the 

NCCA SAR Cost Growth study (Reference 88).  If these and other references are unavailable, Table 2-9 is 

offered as a table of last resort.  The defaults are based upon the following assumptions (note that the 15/85 

bounds in this table do not need to be adjusted for skew): 

 Lognormal: the standard deviation in log-space is 0.15 for low, 0.25 for medium, 0.35 for high and 

0.45 for extreme high dispersion 

 Weibull: the point estimate probability / factor of location (minimum) is 0.25 / 1.15 for low, 0.20 / 

1.25 for medium, and 0.15 / 1.50 for high 

 All other distributions: the standard deviation divided by the mean (i.e. the coefficient of variation – 

CV) is 0.15 for low, 0.25 for medium, 0.35 for high. 0.45 for extreme high and no skew 

 Skew defined as (Mode-Low)/(High-Low).  Left skew is 0.25, symmetrical is 0.50, right skew is 0.75 
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Table 2-9  Table of Last Resort Bounds for Subjective Distributions 

 

 

Note the CVs in this table are intended for lower-level WBS elements and CER inputs.  These are not to be 

confused with the CV benchmarks discussed in Section 3.5.3. 

There is sufficient information in the table to model the distributions in any of the available tools.  See 

Appendix A.6.4  for the mathematics of converting the available set of lognormal distribution parameters to 

those that may be more convenient to use in the selected risk and uncertainty tool. 

2.6 DOCUMENT COST METHOD AND COST DRIVER UNCERTAINTY 

Uncertainty must be considered at several steps in the cost estimating process and will be addressed through 

a combination of objective and subjective uncertainty.  Table 2-10 illustrates one way to build the estimate 

and make it easy to review key pieces of information including: 

 The distribution shape and position of the point estimate in the distribution 

 Distribution parameters as a percent of the point estimate when uncertainty should scale with what-if 

cases and in the case of low/high values, their percentiles should be shown 

 Distribution as values when the uncertainty range should not change with what-if cases 

 The source of each uncertainty 

The precise layout varies by organization and personal work style, but tables such as this one are a best 

practice for documentation and for use in technical reviews. 

Distribution

Point 

Estimate 

Position

Point 

Estimate 

and 

Probability

Mean* CV* 15% 85% Distribution

Point 

Estimate 

Position

Point 

Estimate 

and 

Probability

Mean* CV* 15% 85%

Lognormal Low Median 1.0 (50%) 1.0113 0.1509 0.8560 1.1682 Uniform Low Left Mode 1.0 (75%) 0.8701 0.1724 0.6882 1.0520

Lognormal Med Median 1.0 (50%) 1.0318 0.2541 0.7718 1.2958 Uniform Low Mode 1.0 (50%) 1.0000 0.1500 0.8181 1.1819

Lognormal High Median 1.0 (50%) 1.0632 0.3613 0.6957 1.4373 Uniform Low Right Mode 1.0 (25%) 1.1299 0.1328 0.9480 1.3118

Lognormal Ehigh** Median 1.0 (50%) 1.1067 0.4743 0.6273 1.5943

Normal Low Mean 1.0 (50%) 1.0000 0.1501 0.8445 1.1555 Uniform Med Left Mode 1.0 (75%) 0.7835 0.3191 0.4804 1.0866

Normal Med Mean 1.0 (50%) 1.0000 0.2501 0.7409 1.2591 Uniform Med Mode 1.0 (50%) 1.0000 0.2500 0.6969 1.3031

Normal High Mean 1.0 (50%) 1.0024 0.3458 0.6400 1.3632 Uniform Med Right Mode 1.0 (25%) 1.2165 0.2055 0.9134 1.5196

Normal EHigh Mean 1.0 (50%) 1.0154 0.4258 0.5547 1.4703

Weibull Low Mode 1.0 (25%) 1.1581 0.1794 0.9564 1.3695 Uniform High Left Mode 1.0 (75%) 0.6969 0.5023 0.2726 1.1213

Weibull Med Mode 1.0 (20%) 1.3932 0.3324 0.9563 1.8547 Uniform High Mode 1.0 (50%) 1.0000 0.3500 0.5757 1.4243

Weibull High Mode 1.0 (15%) 2.1037 0.5723 1.0000 3.2766 Uniform High Right Mode 1.0 (25%) 1.3031 0.2686 0.8788 1.7275

Triangle Low Left Mode 1.0 (75%) 0.8775 0.1779 0.6953 1.0414 Uniform EHigh Left Mode 1.0 (75%) 0.6949 0.5774 0.2085 1.1813

Triangle Low Mode 1.0 (50%) 1.0000 0.1500 0.8338 1.1662 Uniform EHigh Mode 1.0 (50%) 1.0000 0.4500 0.4544 1.5456

Triangle Low Right Mode 1.0 (25%) 1.1225 0.1391 0.9586 1.3046 Uniform EHigh Right Mode 1.0 (25%) 1.3897 0.3238 0.8441 1.9353

Triangle Med Left Mode 1.0 (75%) 0.7959 0.3270 0.4923 1.0690 Beta Low Left Mode 1.0 (61%) 0.9393 0.1600 0.7750 1.0986

Triangle Med Mode 1.0 (50%) 1.0000 0.2500 0.7230 1.2769 Beta Low Mode 1.0 (50%) 1.0000 0.1502 0.8375 1.1625

Triangle Med Right Mode 1.0 (25%) 1.2041 0.2161 0.9310 1.5078 Beta Low Right Mode 1.0 (39%) 1.0607 0.1417 0.9014 1.2249

Triangle High Left* Mode 1.0 (75%) 0.7454 0.4479 0.3467 1.1028 Beta Med Left Mode 1.0 (63%) 0.8833 0.2827 0.6046 1.1517

Triangle High Mode 1.0 (50%) 1.0000 0.3501 0.6122 1.3878 Beta Med Mode 1.0 (50%) 1.0000 0.2502 0.7255 1.2745

Triangle High Right Mode 1.0 (25%) 1.2858 0.2834 0.9034 1.7109 Beta Med Right Mode 1.0 (37%) 1.1170 0.2240 0.8483 1.3957

Triangle EHigh Left* Mode 1.0 (75%) 0.7454 0.4960 0.3004 1.1501 Beta High Left Mode 1.0 (66%) 0.8085 0.4191 0.4117 1.1862

Triangle EHigh Mode 1.0 (50%) 1.0045 0.4439 0.5088 1.4998 Beta High Mode 1.0 (50%) 1.0000 0.3501 0.6046 1.3955

Triangle EHigh Right Mode 1.0 (25%) 1.3674 0.3426 0.8758 1.9140 Beta High Right Mode 1.0 (33%) 1.2021 0.2912 0.8157 1.6061

** EHigh = Extreme High * To match these paramaters, tools must be set to truncate the distribution at zero.



 Joint Agency Cost Schedule Risk and Uncertainty Handbook 

 . 34 

Table 2-10  Combining CER and Input Uncertainty 

 

Define distributions in a single location within the model with key parameters clearly visible in an organized 

format. This will simplify performing what-ifs, supporting technical reviews and applying correlation. 

2.7 CAPTURING THE RISK REGISTER IN THE COST MODEL 

The risk register is a record of all events identified by the project team that may have either a positive or 

negative impact on the cost estimate.  This record includes information such as: 

 A description of the event 

 The probability the event will occur 

 The impact of the event should it occur.  It is important to note that the impact of the event could be a 

risk (unfavorable result) or an opportunity (favorable result). 

 Risk mitigation strategies 

 The risk owner 

The risk register needs to be captured by the CISM or FICSM model. This section provides guidance on how 

to capture the risk register in the cost model where “risk” references the risk register and “uncertainty” 

references the uncertainty captured in the model not addressed by the risk register. 

2.7.1 Risk Register Events 

The Risk Reporting Matrix illustrated in Figure 2-17 is typically used to report risks identified within a 

program. The level of risk for each event is mapped to a low (green), moderate (yellow), or high (red) risk 

based upon its probability (likelihood) and cost (consequence).  Each square is populated with the number of 

events that fall into the relevant square. 

 

  Figure 2-17  Risk Reporting Matrix 

The DoD Risk Management Guide (Reference 53) provides the probability of occurrence for each level as 

shown in Table 2-11. For example, if the event is cited as Level 3 likelihood it has a fifty percent probability 

of occurring.  Individual program offices may tailor these probabilities, but the following process remains the 
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same. Additionally, the program needs to define the cost impact and schedule impact values for each 

consequence level in Table 2-11.  Correlation of risk consequences should also be addressed in the model. 

Table 2-11  DoD Risk Management Guide Suggestions for Likelihood and Impact 

 

The cost analyst needs to obtain the risk register (introduced in Section 1.3.2) generated by the project risk 

management team and determine which of the risk events have not been captured by the cost model and are 

significant enough to add to the cost model.  However, the sources of discrete risk items to be modeled are 

not limited to the risk register.  Additionally, opportunities to reduce cost should also be captured.  But it is 

essential that risk register items are not added if they are already addressed in the uncertainty captured in the 

current model. 

Each item in the program risk register needs to be carefully assessed to properly augment the cost uncertainty 

model.  Take care to properly interpret the cost and schedule consequences as often the risk management 

team may be providing impacts only to the program’s current or pending contract.  The analyst may need to 

extrapolate the consequences to the remainder of the life cycle. 

2.7.2 Modeling Risk Register Events 

When it is determined that risk register items are not already captured in the uncertainty model, there are two 

recommended approaches to model them: 

 Few Risk Register Items:  If there are only a few discrete uncertainties, their cost impact on the 

point estimate should be included in the form of supplemental “what-if” cases, regardless of their 

probability of occurrence.  Funding at the “expected value” (probability of occurrence times the cost 

impact) is not recommended.  Doing so does not capture sufficient funds to pay for the event should 

it occur, yet allocates unnecessary funds to the project if the event does not occur. 

 Many Risk Register Items:  If there are many discrete uncertainties, then they should be listed and 

uncertainty assigned using the “yes/no” criteria, which is modeled using the Discrete distribution in 

@RISK, the “Yes/No” distribution in Crystal Ball or the Probability of Occurrence column in ACE.  

The point estimate value for each risk register item should be zero.  Their impact will be captured by 

the simulation. 

Likelihood Consequence

Level Likelihood

Probability 

of 

Occurrence

Level Technical Performance Schedule Cost

1 Not Likely ~10% 1
Minimal or no consequence to technical 

performance
Minimal or no impact Minimal or no impact

2 Low Likelihood ~30% 2

Minor reduction in technical performance or 

supportability, can be tolerated with little or no 

impact on program

Able to meet key dates.

Slip < * month(s)

Sub-system slip > * month(s) 

plus available float.

Budget increase or unit 

production cost increases.

< ** (1% of Budget)

3 Likely ~50% 3

Moderate reduction in technical performance 

or supportability with limited impact on 

program objectives

Minor schedule slip. Able to 

meet key milestones with no 

schedule float.

Slip < * month(s)

Budget increase or unit 

production cost increases.

< ** (5% of Budget)

4 Highly Likely ~70% 4

Significant degradation in technical 

performance or major shortfall in 

supportability; may jeopardize program 

success

Program critical path affected

Slip < * months

Budget increase or unit 

production cost increase

< ** (10% of Budget)

5 Near Certainty ~90% 5

Severe degradation in technical performance; 

Cannot meet KPP or key 

technical/supportability threshold; will 

jeopardize program success

Cannot meet key program 

milestones.

Slip > * months

Exceeds Acquisition 

Program Baseline threshold

> ** (10% of Budget)
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Uncertainty should be applied to the cost impact as well as the probability of occurrence (Reference 64).  In 

the example, risk register item 2 (RR2) (see Figure 2-2) is for the case when there is some likelihood the 

baseline single-mode seeker fails to meet requirements and, as a consequence, an alternate multimode seeker 

would be necessary for the Guidance Section.  This has a 30% chance of occurring.  The median impact of 

this event is an additional $50K on the first unit cost.  Both the likelihood (30%) and the consequence 

($50K) are themselves point estimates and must receive uncertainty treatment.  The 30%’s chance of 

occurrence uncertainty is modeled as a betaPERT distribution as shown in the left-hand panel of Figure 

2-18. A Yes/No distribution is defined with the probability of yes linked to the 30%’s uncertainty forecast as 

shown in the center panel.  The $50K’s impact uncertainty is modeled as a lognormal as shown in the right-

hand panel.  The complete guidance system first unit cost (cell F112) that flows through the remainder of the 

estimate is modeled as the sum of the baseline (cell F113 which is also uncertain) point estimate and the 

result of the product of the Yes/No cell and the $50K’s uncertainty cell (cell F114 = F123 * AE125). 

Uncertainty should be applied to both the risk register cost impact and the probability of occurrence. 

 

  

Figure 2-18  Discrete Uncertainty Example 

Some considerations: 

 Model the risk register events to directly impact the relevant elements as illustrated in Figure 2-2 

 If the risk register event is highly probable, consider including its full impact in the point estimate 

and model the lower likelihood of it not happening as the risk register event 

 When modeling uncertainty on a negative, the meaning of low and high can become confusing and 

for some distributions (like lognormal) impossible to define with the appropriate skew.  In this case, 

consider modeling the value and its uncertainty in positive terms, but then subtract the results from 

the applicable element within the model. 

 Keep in mind risk register items may have been encountered by the programs in the database and 

may already be captured by the uncertainty of the CER 

 Model the impacts of risk register events to duration variables where applicable 

 No risk register is comprehensive. Keep in mind there may be other sources of discrete risk in the 

program that should be modeled.  
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2.7.3 Modeling Risk Register Event Mitigation 

The inclusion of risk mitigation plans often introduces additional cost elements into the cost estimate.  This 

has the effect of “adding to” the initial cost estimate.  However, the presence of these risk mitigation plans 

should have an impact on the uncertainties or risk register events assigned to the WBS elements that they 

address.  For example, spending money to mitigate the cost impact of the guidance first unit failure risk may 

cause the event impact to be reduced, eliminated and/or the probability of occurrence to be reduced. 

Risk register items are modeled as discrete events. 

Exercise care to not double count risk. 

Items to be modeled as discrete events are not limited to those obtained from the risk register. 

2.8 SPECIAL CONSIDERATIONS 

2.8.1 Truncating Objective or Subjective Uncertainty 

In cost estimating, it is not unusual to obtain objective or subjective bounds that cause the distribution shape 

to stretch into the negative region (below zero) despite never observing a value in that region.  As discussed 

in the fit distribution section, analysts may choose to force a lower bound when performing the fit.  

Alternatively, an unconstrained fit that stretches into the negative region can be truncated when used in the 

simulation tool.  Employing distributions that include values less than zero is discouraged unless there is 

compelling evidence that negative values are a reasonably expected outcome and the model will perform 

properly.  All tools provide the ability to truncate distributions at either a low point, high point or both.  

Establishing the lower limit of the distribution to be zero will avoid nonsensical situations of negative dollars 

in cost elements or negative weight, power, volume, etc. in CERs.  There are two significant impacts to be 

considered when truncating at zero.  First, the distribution variance will be reduced and, second, the mean 

will shift to the right.  Care should be taken to determine the impact and if it is acceptable.  However, in 

situations when negative tails would represent nonsensical outcomes, the analyst is encouraged to either 

truncate or select a distribution, such as lognormal, that does not require truncation to simplify the 

explanation of the model.  

Select distributions that will not give rise to nonsensical simulation draws. Truncate at zero when necessary. 

2.8.2 Sunk Costs 

Costs that have been incurred and cannot be recovered are called sunk costs.  Further, for many acquisition 

decisions, funds that have been authorized and obligated in prior years are often deemed sunk though they 

have not been totally expended.  Sunk costs are often part of a life cycle cost model because current and prior 

years are part of a system’s total cost.  Prior years’ costs (and often current year’s costs) should not have 

uncertainty distributions associated with them.  In any event, it is essential to report both sunk and cost to-

go when reporting cost in order to facilitate comparisons to project estimate at completion and previous 

estimates. 

Updating an estimate to include sunk costs requires a firm grasp on the difference and the appropriate source 

for cost associated with government obligations and expenditures.  When our cost estimate (like the example 

model) is built to support the budgeting process, it will be in terms of obligations.  Sunk costs added to an 

obligation cost estimating model must reflect obligation dollars, not government expended nor contractor as 

expended. The best source for government obligation or expenditure data comes from the government 

financial execution branch.  If utilizing expended dollars, the expenditures need to be traced back to the 

obligation year and applied as sunk costs for the obligation year in the cost estimate.  The sunk costs should 

be entered as TY$ in the year of obligation.  When using actual cost of worked performed from contractor 
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reports (CPRs or CSDRs) as a source for sunk costs, be aware that these sources represent the accruals on the 

contract and may not include the information necessary to trace the cost back to the obligation year.  If using 

these data sources, the analyst has the burden of determining how to make adjustments so that the accruals 

can be properly entered as a sunk cost into an obligation estimate. 

When sunk costs are in play, addressing uncertainty can be complicated. There are many ways to approach 

the modeling task. The uncertainty for the initial estimate is generally based on an analysis of total costs, not 

on costs to-go from some point in the project. Subtracting the sunk costs from the total cost estimate to arrive 

at cost to-go may make sense. But defining how much of the uncertainty remains in the cost to-go portion is 

more difficult to assess. 

The following process is recommended for addressing sunk costs assigned to a specific element in the risk 

and uncertainty model: 

 Every effort should be made to estimate the cost to-go based upon the best assessment of current 

circumstances.  Noting that the total point estimate changes (sunk + cost to-go may not equal the 

original total point estimate cost) should not discourage using this approach. 

 Divide the original uncertainty parameters by the point estimate cost to convert parameters to a 

percent of the original total point estimate 

 Use these results to calculate the uncertainty parameters for the uncertainty on the cost to-go.  Use a 

distribution of the same shape, but scaled to the cost to-go. 

 If possible, obtain evidence to determine if the sunk costs are consistent with progress to-date.  

Ideally, this assessment should be data-driven, for instance through analysis of EVM data.  However, 

it may be necessary to resort to expert opinion.  If the evidence is compelling, consider multiplying 

the scaled uncertainty by a CER adjustment factor as described in Section 2.8.6. 

 Determine if any risk register events associated with the element have been retired or need to be 

included in the assessment of the cost to-go 

To illustrate this process on one element, Design and Development, two years of sunk cost are assumed.  In 

the example model, the estimating structure is modified so that Design and Development is the sum of sunk 

and to-go costs.  The sunk costs are throughput ($2M in 2014 and $3.6M in 2015) and the to-go cells 

compute as before.  In the inputs section, two uncertain items have been retired.  First, the EMD start date is 

now known with certainty (fixed as May 1, 2014).  Second, the risk register item #2 concerning an alternate 

guidance section did not happen and has been retired.  Since duration is an input parameter, it is now 

comprised of sunk months and to-go months.  Similar to the modified cost estimating structure, the input 

parameter structure is modified so that EMD duration is the sum of sunk months and to-go months.  The 

point estimate duration in this example is the original duration minus the sunk months.  The bounds on the 

duration uncertainty distribution were converted to percentages.  The changes to the model are shown in 

Figure 2-19 and the resulting S-curves are shown in Figure 2-20.  Note the total CV is reduced with the 

inclusion of sunk costs. 

 

Sunk  costs should not have uncertainty distributions associated with them. 
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Figure 2-19  Sunk Cost Example 

 

 

Figure 2-20  S-curves for Sunk Cost Example 

Uncertain EMD 
Start Date RetiredSunk Duration

Point Estimate of 
Remaining 

Months

Remaining Months 
Scaled Uncertainty 

Bounds

Risk Register Item 
Retired

Sunk Costs 
Throughput

To-go Cost Cell 
Formulas Unchanged

Change Element Structure 
to Sum of Sunk and To-go
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2.8.3 Engineering Changes 

It is extremely rare for a project to proceed through the acquisition cycles without experiencing engineering 

changes. Even so, cost elements for engineering changes such as Engineering Change Orders (ECO) are not 

meant to be the catchall for potential system cost growth or a place to allocate probability adjustment dollars 

(see Section 3.6). It is, therefore, not acceptable to use the ECO cost element to increase management 

reserve or as a substitute for uncertainty analysis. It is, however, appropriate to assign uncertainty to the 

method by which engineering change costs are estimated. When engineering changes are explicitly modeled 

as an element in the point estimate WBS, its uncertainty should be treated in a manner consistent with the 

method by which the element is estimated. Furthermore, care should be taken not to double count if discrete 

risk register items have already addressed possible new scope. 

2.8.4 Inflation 

Inflation is the overall increase in prices, or a general rise in the price of goods and services.  Escalation is 

the increase in the cost or price of specific goods or services specific to an item or class of items.  Escalation 

includes general inflation, but is also driven by changes in technology, practices, and particularly supply-

demand imbalances that are specific to a good or service in a given economy. 

 Inflation indices account for the effects of inflation 

 Price indices account for the effects of escalation 

The rates used will have a significant impact on any budget. Historically, programs used the Office of the 

Secretary of Defense and Office of Management and Budget published inflation rates for use in official 

estimates. However, the escalation rates experienced by a specific industry can be significantly higher. As a 

result, contracts have been signed and executed based upon industry specific escalation rates while budgets 

were based on the lower OSD inflation rates, creating a risk of cost growth from the outset. A GAO case 

study, reported in Reference 41, showed that the difference in rates applied to ships, while holding all other 

factors constant, explained 30 percent of the $2.1 billion in cost growth for these particular ships. In 

February 2004, the Navy changed its inflation policy directing program offices to budget with what the Navy 

believes are more realistic escalation indices. This practice is becoming common in cost estimating and 

heavily influences the assessment of inflation uncertainty modeling.  (For additional guidance, refer to your 

agency’s policy for the mechanics of inflating using commodity price indexes to obtain a Then Year (TY) 

estimate and deflating using OSD rates to obtain the constant year estimate of record.)  

Cost models that are heavily influenced by the uncertainty associated with labor rates, unit prices or other 

similar cost drivers may, in fact, already capture some degree of inflation uncertainty, depending on how 

their uncertainty is estimated.  The point is, be careful not to double count inflation uncertainty if there are 

methods in the model that already capture at least some part of it. While many references propose 

approaches to defining inflation uncertainty, there is no current consensus on a specific approach and this 

handbook does not recommend one. 

There are many papers on the treatment of inflation uncertainty analysis, for instance Reference 75 and 92.  

The analyst is encouraged to continue to look for additional guidance on this topic.  

2.8.5  Defining Uncertainty for Cost Improvement Curve (CIC) Methodologies 

Cost improvement curves (also known as learning curves) are a source of uncertainty that must be modeled.  

While all the uncertainty principles presented thus far in the handbook apply, there are additional issues to be 

considered when CIC methods are employed.  For example, consider the unit theory CIC equation: 

Equation 2-2  Unit Theory CIC Equation 

Unit Cost = T1 * Q ^ b 
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where  

T1 is the theoretical first unit cost 

Q is the unit number 

b is the exponent associated with the given CIC slope (b = log(Slope)/Log(2))   

As in the case with all other cost estimating methodologies, uncertainty on CIC methodologies should be 

based on historical data when possible.  If T1 and b are established by regression analysis, then the 

regression equation gives rise to the point estimate and the equation’s uncertainty should be modeled.  The 

statistics from the regression analysis can be used to objectively define the uncertainty of the equation as a 

whole as with any other CER.  In this situation, however, uncertainty should not be modeled on the T1 value 

or the slope value since they were solved by the regression and are not independent variables.  This is how 

CIC uncertainty is assigned in the example model. 

However, in actual practice, the estimate for T1 and the estimate for slope are often obtained independently.  

In which case, the CIC equation is simply a functional relationship with a point estimate of the T1
6
 and a 

point estimate of the slope as its inputs.  Therefore apply uncertainty to each input value and not to the 

equation.  Note T1 and b in our example model are highly negatively correlated and should be specified as 

such in the uncertainty model if they are addressed separately.  Omitting negative correlation between T1 and 

slope may overstate uncertainty. 

Here are guidelines for three common situations: 

 Obtain T1 and obtain slope from separate sources. If the T1 is computed via a parametric 

equation, use fit statistics from the equation to model its uncertainty.  If the T1 is an analogy or expert 

opinion, then apply subjective uncertainty.  If the T1 source does not have an inherent slope, it is 

recommended to obtain a slope using historical data from multiple systems using pooled regression 

and model its uncertainty based on the standard deviation on the b coefficient.  A high negative 

correlation between T1 and slope is often appropriate. 

 Compute a T1 from a single reference lot using a borrowed slope.  If borrowing a slope from a 

single analogous program or a group of similar programs, that slope was likely computed from a 

regressed equation.  Therefore, use the standard deviation on the b coefficient to define slope 

uncertainty.  If the slope is obtained via expert opinion, then apply subjective uncertainty.  When 

using a known reference lot cost, use this value as a model input and insert a row or cell to compute 

the model’s T1 using the same slope used in the estimate. Doing so will enable each iteration of the 

simulation to recompute the T1 given that iteration’s draw on slope. .  If the model does not estimate 

T1 based upon the selected slope, consider using a high negative correlation between T1 and slope.  If 

an adjustment factor is applied, such as a step function for transition from prototype to production, 

then also apply uncertainty to the factor.  Again, if the factor is rooted in data, apply uncertainty as 

measured from the data; otherwise, apply subjective uncertainty. 

 Compute both T1 and slope from the program’s prior lots.  This is a straightforward use of 

regression and uncertainty should be applied to the equation using fit statistics.  Do not separately put 

uncertainty on the slope or T1 as these are simply regression coefficients. However, if the analyst 

believes the scatter in the prior lots does not fully address uncertain CIC for future lots, then 

subjective methods may be considered. 

In summary, take care to not over specify uncertainty for CICs.  Specify uncertainty on either the CIC 

equation, or on the T1 and b pair, but not both. 

                                                 
6
 Throughout this section T1 is used as the reference unit cost but refers to any reference value modeled such as UC10 or UC100.  

Take care to use the same slope for each applicable computation (such as pivot calculations) throughout the model for each 

simulation draw. 
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Here are some additional considerations: 

 Truncating slopes:  The essence of CIC theory is decreasing cost with increased cumulative 

quantity.  While occasionally history will show increases between lots this is likely due to unique 

circumstances or incomplete lot normalization.  It is recommended that distributions on slopes be 

truncated at 100%. 

 Adjustment factors:  Often a T1 obtained from data is further adjusted to an estimate’s T1 to account 

for configuration or process changes.  In this case, model the factor as a multiplier and assign 

uncertainty to the factor.  Adjustment factors are discussed further in Section 2.8.6 

 Broken CIC, shift, rotation, displacement, etc.:  Many programs have conditions necessitating 

variations to the typical CIC.  For example an analyst may utilize a steep slope early in a program to 

account for material delays or exceptional amounts of rework with a flatter slope in later lots to 

account for maturing processes.  While every situation cannot be foreseen and addressed here, the 

analyst is encouraged to model CIC uncertainty using distributions fitted to historical data whenever 

possible but use subjective uncertainty when applicable data is not available. 

 Rate-adjusted CIC:  Consider the rate-adjusted CIC equation: 

Equation 2-3  Rate Adjusted CIC Equation 

Unit Cost = T1 * Q ^ b * R ^ c 

where T1 is the theoretical first unit cost at a rate of 1; Q is the unit number; R is the production rate; 

b is the exponent associated with the given CIC slope; and c is the exponent associated with the given 

rate slope.  All of the concepts discussed above apply.  Consider a high negative correlation between 

T1 and each slope. All the concepts in this section also apply when modeling quantity discounts, as 

this is equivalent to using the above equation with b set to 1 (100% CIC).  

 Rate-adjusted CIC ridge regression: Sometimes the multicolinearity between the cumulative lot 

quantity and lot rate is present in historical data and gives rise to an unreasonable pair of regressed 

slopes.  The analyst may use ridge regression (Reference 23 and 37) to mitigate the effects of 

multicolinearity and improve the reasonableness of the results.  If borrowing slopes from ridge 

regression results, be aware ridge regression can result in a tiny standard deviation on the resulting 

coefficients. Therefore, consider subjective uncertainty on those slopes. 

Take care to not over specify uncertainty for CICs. 

Specify uncertainty on either the CIC equation, or on the T1 and b pair, but not both. 

Unless there is strong evidence to do otherwise, truncate slopes at 100%. 

2.8.6 Adjustment Factors  

CERs are developed from historical data where some technical characteristic such as weight or power is used 

to estimate cost.  Alternatively, subject matter experts may provide direct estimates based upon an analogy.  

By doing so, it is assumed that the CER or analogy is applicable to a project being estimated.  If, however, 

there is compelling evidence that the CER or analogy on its own insufficiently estimates the cost for the new 

project, an adjustment may be warranted.  The best way to account for such issues is to revisit the cost 

methods and find one that is more consistent with the new project.  Unfortunately, this is not always possible 

or practical.  In the absence of better information, and when direct modeling is not feasible, an acceptable 

approach is to multiply the estimate method by an uncertain factor. 

In the example model, the new missile’s payload composition differs from the CER dataset such that an 

additional 10% is added to the CER results.  This situation is modeled as: 
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(30.15 + 1.049 * WarheadWt) * PayloadAdjustment 

where PayloadAdjustment has a point estimate of 1.1 and is the mode of a triangular distribution where the 

minimum is 0.9 and the maximum is 1.5.  The impact of the adjustment factor is illustrated in Figure 2-21. 

 

Figure 2-21  Impact of an Adjustment Factor on Cost 

This approach should only be used in cases where better information is unavailable.  Some organizations 

have developed their own standard multipliers and their uncertainty.  See Reference 43 for an example. 

2.8.7 Calibrated CERs  

Analysts frequently rely on published, validated CER libraries (e.g., the Unmanned Space Cost Model CER 

library https://www.uscmonline.com/ to obtain a relevant estimating method for one or more of the elements 

in their model. Whether drawing from a CER library or from an analysis of relevant historical data, an 

analyst may also discover a completed program from the CER’s dataset that would be a suitable analogy. In 

these situations, the analyst may choose to calibrate the chosen CER to this known data point.  For an 

equation of the form Y=aX^b this means computing a new intercept (a) by fitting the same slope (b) through 

the selected analogous data point.  The calibrated CER line will now pass through the analogy.  Ideally the 

data will be available to plot this calibrated CER against the original source data to be comfortable that the 

shift in the CER line remains consistent with the source data.  While this is a straightforward way to obtain a 

more defendable point estimate, how should the original CER uncertainty be adjusted to account for the 

recalibration?  There are at least two ways to address this question: 

https://www.uscmonline.com/
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 One view
7
 is that if there is evidence to support that the analogy is more similar to the system being 

estimated than the average data point in the CER data set, then it may be reasonable to conclude that 

the CER uncertainty should be reduced.  One way to do this is to make use of the original regression 

statistics.  The uncertainty of the intercept could now be assumed to be zero.  This would mean that 

the uncertainty of the CER is now defined solely by the uncertainty of the exponent.  After all, the 

slope has been borrowed from the original equation, so it stands to reason the slope’s uncertainty 

should be borrowed as well.  A way to model this is to treat the exponent as another input to the CER, 

and then specify the exponent as the mean of a lognormal with the exponent’s standard deviation.  

The exponent’s standard deviation is typically available from the original regression report.  Take 

care to ensure the unit space values (rather than fitted space) for the exponent and its standard 

deviation are retrieved from the regression report. 

 Another view is that nothing has changed regarding how the CER was developed.  The interaction of 

the intercept and the exponent uncertainty is not a simple one.  The correlation between the intercept 

and exponent is integral to the overall CER uncertainty.  Simply shifting the CER to pass through the 

analogy does not change the CER's uncertainty.  The uncertainty applied to this new point estimate, 

on a relative scale, may be the same, but it will yield a different S-curve that should be more 

defendable. 

There are other ways to estimate the uncertainty of a calibrated CER and the analyst is encouraged to explore 

the literature on the subject.  Choosing the right path may lie, in part, by assessing where the analogous point 

lies within the original dataset. 

2.8.8 Uncertainty on Fee 

When Fee and other contract loadings such as general and administrative (G&A) and cost of money are 

modeled as variables they will need uncertainty assigned unless they are known to be fixed.  Consider fixed 

bounds as these variables truly do not have long tails.  Though modeling every nuance of a contract’s fee 

plan may be challenging, strive to model the fee plan so that each simulation pass calculates the correct fee 

for that pass’ cost.  For instance, the fee (and/or award fee) and its uncertainty need to be consistent with the 

contract type, phase, and any contractual obligations.  Fee may also be different at different points in time 

(e.g., the milestones).  

                                                 
7
 Dr. Christian Smart provided a detailed discussion on this approach on pages 97-99 of Reference 91. 



 Joint Agency Cost Schedule Risk and Uncertainty Handbook 

 . 45 

3.0 FINISH AND ASSESS THE CISM MODEL 

3.1 COMBINING UNCERTAINTIES AND INTRODUCING CORRELATION 

The purpose of the simulation is to combine all the uncertainties specified in the model to estimate the total 

uncertainty at the parent levels.  Figure 3-1 illustrates how the simulation process combines the input 

uncertainty with the CER uncertainty for a specific element in the model.  Each trial of the simulation makes 

a random draw from all the risk and uncertainties in the model to generate a point estimate.  The result of 

each WBS element is summed to develop simulated results at the parent levels. 

  

Figure 3-1  Combining Methodology and Methodology Input Uncertainties 

A critical part of the simulation model is to define the correlation between each of the distributions defined 

in the model.  Correlation is the term used to describe the degree to which variables “move together”.  For 

instance, if a random sample from one distribution is taken from the high end of the distribution, is there any 

reason to expect others would be drawn in a similar way?  The level of correlation in a model has a profound 

influence on the results and is addressed in the following sections.  For details, see Appendix A.11. 

3.2 FUNCTIONAL VERSUS APPLIED CORRELATION 

The term functional correlation has been in the lexicon since at least 1994 (see Reference 17 and 19) and yet 

it is largely misunderstood.  Essentially, it is referring to the correlation that is developed in the simulation 

due to the mathematical (functional) relationships within the model.  Uncertainty that is defined on a variable 

or assigned to a CER will be inherited by any relationship that uses them in its equation.  Functional 

correlation can exist between: 

 CER inputs if these inputs are in fact a function of each other 

 CERs if the CERs share one or more common input variables.  A common mistake is to assign the 

same CIC slope variable to a variety of elements.  With this variable’s uncertainty modeled only 

once, these elements will be inadvertently correlated in the model. 

 Two or more CERs if one CER is related to other CERs (for instance through a factor relationship). 

 A CER result and the uncertainty of its input(s) 

A good rule of thumb is if the relationship between uncertain elements in the model is known, then capturing 

that in the functional relationships should be attempted.  For instance, if the motor weight is known to be a 

function of the air vehicle weight through an engineering or regression result, then this relationship should be 

explicitly implemented in the model rather than allowing the elements to behave independently in the model.  

This simplifies what-if analysis and improves the chances of the simulation behaving properly. 
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If there are no known functional relationships to employ, every simulation tool will allow correlation to be 

applied.  Applied correlation is when the analyst specifies a correlation between two or more uncertainty 

distributions.  It is also possible to apply additional correlation across functionally correlated items.  Applied 

correlation does not replace functional correlation. The net effect in the simulation is the combination of the 

applied and functional correlation, and it is not a simple sum.  It is necessary to measure correlation in the 

simulation result before and after applied correlation to determine the applied correlation impact.  Most 

simulation models contain a mix of both functional and applied correlation. 

Functional correlation is a result of model functional relationships.  Applied correlation is specified by the 

analyst. 

3.3 MEASURE THEN APPLY CORRELATION 

3.3.1 Overview of Correlation Assessment 

The uncertainty analysis is not complete until correlation is addressed.  If correlation is ignored, the variance 

at the total levels in the estimate may be understated, in many cases dramatically.  The results of the first 

simulation run can be used to measure (see Section 3.3.4) the functional correlation already present across 

the model WBS due to mathematical relationships.  If a WBS element result is a function of two or more 

uncertain parameters (e.g., estimating data cost by multiplying the uncertain air vehicle cost by an uncertain 

factor – see Table 2-1) then the correlation between the associated WBS elements (in this case Data and 

Design or Data and Prototypes) will not be perfect (correlation coefficient will be less than 1.0). 

For many situations, the correlation across WBS elements will not be adequately captured through functional 

relationships.  In these cases, additional correlation needs to be applied.  A good first step is to organize the 

model inputs into groups that should move together (either positively or negatively) and develop a 

correlation matrix.  Correlating cost method inputs will induce correlation across the WBS element results.  

Measure, apply, and then measure again to ensure adequate (see Section 3.3.2) correlation is present.  

A correlation matrix is an efficient way to define all the correlations amongst a group of uncertainty 

distributions built into the model.  The diagonal of the matrix (from upper left to lower right) is populated 

with ones to define the correlation between each distribution in the group and itself.  Only half the matrix 

need be specified as the other half (other side of the diagonal) is a mirror image.  When building the 

correlation matrix, there are several issues to consider: 

 Consistent Matrix:  Care must be taken to populate the matrix with a consistent set of correlations.  

For example, if A:B and B:C are highly correlated in a positive direction, then assigning a strong 

negative to A:C would cause an inconsistency.  

 Inconsistent Matrix:  When Crystal Ball or @RISK detects a correlation matrix that is inconsistent 

enough to prevent the simulation from running, they will offer the option to adjust correlations 

enough to allow the simulation to proceed (ACE does not allow the user to enter an inconsistent 

matrix).  If a consistent matrix is not specified, then algorithms are applied to transform the specified 

matrix into a consistent matrix which may vary significantly from the original analyst-specified 

matrix.  While there is no reason to doubt the algorithms, the tools use different methods and the user 

is not in control of the outcome.  When inconsistent matrices are encountered and a manual fix can be 

expediently applied, it is recommended they are repaired manually rather than letting the software 

attempt it.  Review the tool’s recommendation for guidance on where to make adjustments.  

Proactively investigate and repair an inconsistent matrix. 
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 Empty Correlation Matrix Cells:  Popular simulation tools treat empty cells in a correlation matrix 

differently.  Crystal Ball allows the user to leave cells in the matrix blank.  Crystal Ball will “fill in” 

the blank cells.  If the top row of the matrix is fully populated and the remainder empty, the math 

Crystal Ball uses to fill in blanks is known and easy to understand.  If random cells are blank, it is 

unclear what Crystal Ball does.  For that reason, @RISK requires all cells to be populated.  ACE 

treats an empty cell as zero.  It is recommended that every cell in the matrix (the half being using) be 

populated. 

 Linear Relationship:  Correlation is a measure of the linear relationship between random variables.  

Correlation does not prove a cause-and-effect relationship.  Generally, there is little empirical basis 

for the derivation of the correlation values.  Consequently, correlation is often based on subjective 

judgments (see Reference 26, 27). 

 Impact on Functional Correlation:  Most estimates do contain many elements that are functionally 

related through linear and non-linear methods.  This often causes uncertainty distributions to be 

multiplied, divided, exponentiated, etc.  For this reason, correlation applied on functionally related 

uncertainty distributions will have an impact not only on the spread of the parent, but the mean as 

well.  This is why applying functional relationships (rather than simply adding throughputs) within a 

model wherever possible is so important: it may have a significant impact on the mean of the ultimate 

uncertainty distribution. 

 Measure First:  Before applying correlation, measure the correlation present due to functional 

relationships.  Knowing what is present will help determine what needs to be applied. 

Measure the correlation present in the model first, then apply additional correlation where required.  

3.3.2 Metrics for Assessing Correlation Adequacy 

In the absence of objective data, analysts are encouraged to make subjective correlation assessments using 

the following steps: 

1. Measure the correlation present in the simulation due to functional correlation and identify those 

elements with a correlation of less than 0.3 

2. Determine if specific elements that are currently uncorrelated should “move together,” that is, be 

correlated either negatively or positively 

3. Assign additional correlation using a correlation value between -1 and +1.  Table 3-1 provides 

guidance on default correlation values.  Perfect correlation of +/-1.0 is discouraged.  

4. Measure the correlation again to ensure elements are properly correlated 

Several references (20, 21, 22, 28, and 52) suggest a default correlation of 0.25 when there is no other 

information.  However others provide evidence that 0.45 or 0.63 may be more appropriate (References 77, 

91, 101).  Reference 91 also reports the result of several cost data-driven investigations that supports a 

default closer to 0.3.  The impact of correlation on the parent increases exponentially with the number of 

uncertain child elements, which implies the default should be based on the number of elements to be 

correlated.  As a compromise between all the published recommendations, 0.3 is the recommended default. 
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Table 3-1  Default Correlation Factors  

 

In the absence of better information, 0.3 is the recommended default correlation. 

3.3.3 The Impact of Correlation on a Cost Model 

Only two statistics in the cost model will sum up through the WBS indenture: the mean and the variance.  In 

the case of variance, it will only sum to the parent level variation if the uncertainty distributions are 

independent.  However, if they are correlated either through functional, applied or both types of correlation, 

the total variance can be calculated using the following equation: 

Equation 3-1  Total Variance Adjusted for Correlation 

 

Where σ is the symbol for standard deviation and ρ is the correlation coefficient.  Figure 3-2 demonstrates 

the impact of correlation on the sum of five random variables and compares Crystal Ball simulation results 

with analytical results.  Figure 3-2 contains the following: 

 Analytical results for the mean and standard deviation (method of moments).  See Appendix A.6 for 

the formulas used in Figure 3-2 to calculate the mean and standard deviation for these (and other) 

distributions. 

 The top image shows the results when the correlation is forced to be zero, meaning each distribution 

is sampled independently from any other 

 In the bottom image, a correlation of 0.3 is applied across all elements.  For this example, the zero-

correlation case’s simple sum of the variances underestimates the total standard deviation by 46% 

(107 / 73)!   

 Applying the correlation to these five throughput uncertainties results in no impact on the mean.  In a 

functionally correlated model, applying correlation on top of functional correlation may influence the 

mean a few percent (Reference 58). 

 Element standard deviation is adjusted for correlation using (SD*MMULT(CorrRow,SDCol))^0.5 

where SD is the standard deviation in question, CorrRow is the row in the correlation matrix 

associated with SD, and the SDCol is the column of all five standard deviations.  MMULT is an 

Excel function that performs the necessary matrix multiplication (row times a column). 

 Note that for zero correlation (upper table) the simulation, analytical without adjustment, and 

analytical with adjustment all match.  In the lower table, only the analytical standard deviation 

adjusted for correlation matches the simulation result. 

Strength Positive Negative

None 0.0 0.0

Weak 0.3 -0.3

Medium 0.5 -0.5

Strong 0.9 -0.9

Perfect 1.0 -1.0
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Figure 3-2  Impact of Correlation of 0 and 0.3 on Elements that Sum 

Correlation is an important part of the simulation model.  The more distributions in the model, the more 

important it is to assign correlation in an appropriate manner.  Figure 3-3 illustrates the impact of breaking 

up an estimate into a greater number of uncertain elements on the total uncertainty.  The upper tables 

calculate the standard deviation at the parent level assuming there is no correlation.  In Excel this can be 

done using the formula SumSq(StdDev)^0.5 where StdDev is the Excel range containing the child element 

standard deviations.  To preserve the CV at the total level, the CV of the child elements would have to 

increase.  In this model, child CV would have to increase 60% going from two elements to five and another 

40% to go from five elements to ten.  If the elements are correlated, the effect is significantly diminished.  

 

Figure 3-3  Impact of Adding Correlated Uncertain Elements 

In the bottom table of Figure 3-3, each standard deviation is adjusted to account for correlation as described 

above.  Adding 0.3 correlation almost doubles the CV in this example summing ten elements.  The impact is 

even greater with larger numbers of elements.  

Parameters Simulation Analytical

Total is the sum
Std 

Dev
Min Max Mean Std Dev CV Mean

Std Dev 

No Adj

Std Dev 

Adj For 

Corr
Applied Correlation

Total 500 575 73 0.13 575 73 73 0.000 LN Tri BPERT Nor Unif

Lognormal 100 40 100 40 0.40 100 40 40 LN 1.000 0.000 0.000 0.000 0.000

Triangular 100 75 200 125 27 0.22 125 27 27 Tri 0.000 1.000 0.000 0.000 0.000

BetaPERT 100 75 200 113 22 0.19 113 22 22 BPERT 0.000 0.000 1.000 0.000 0.000

Normal 100 35 100 35 0.35 100 35 35 Nor 0.000 0.000 0.000 1.000 0.000

Uniform 100 75 200 138 36 0.26 138 36 36 Unif 0.000 0.000 0.000 0.000 1.000

Parameters Simulation Analytical

Total is the sum
Std 

Dev
Min Max Mean Std Dev CV Mean

Std Dev 

No Adj

Std Dev 

Adj For 

Corr
Applied Correlation

Total 500 575 107 0.19 575 73 107 0.300 LN Tri BPERT Nor Unif

Lognormal 100 40 100 40 0.40 100 40 55 LN 1.000 0.300 0.300 0.300 0.300

Triangular 100 75 200 125 27 0.22 125 27 42 Tri 0.300 1.000 0.300 0.300 0.300

BetaPERT 100 75 200 112 22 0.19 113 22 37 BPERT 0.300 0.300 1.000 0.300 0.300

Normal 100 35 100 35 0.35 100 35 50 Nor 0.300 0.300 0.300 1.000 0.300

Uniform 100 75 200 137 36 0.26 138 36 51 Unif 0.300 0.300 0.300 0.300 1.000
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Cost estimates are broken into a greater number of elements in order to improve the estimate accuracy and 

provide more flexibility for trade-off studies.  However, as shown in Figure 3-3, doing so will cause the 

parent CV to reduce unless the child CVs are increased.  It is reasonable to expect that breaking the estimate 

into more elements could reduce the overall uncertainty.  However, breaking the estimate into more and 

more sub elements should not be done indiscriminately simply to reduce the parent CV.  For instance, 

consider an auto fuel cost estimate where the CV was found to be 0.25.  Proposing to fill half the tank in the 

morning and the other half in the afternoon (same location, same day) might break the estimate into two 

parts, but should not be used as a way to reduce the total CV to 0.18 (per Figure 3-3).  This would be an 

example of where perfect correlation should be applied between the two filling events to preserve the 

original CV at the total. 

The importance of correlation increases with the number of elements involved. 

3.3.4 How to Measure Correlation 

Tools such as Crystal Ball and @RISK report the correlation entered and the correlation actually used when 

a correction for inconsistency is required.  The tools provide the capability to extract a spreadsheet 

containing each iteration result for any forecast in the simulation.  Once these data are properly sorted in the 

worksheet, Excel’s CORREL function can be used to calculate pairwise correlation.  Performing the 

calculation on the actual values will return the Pearson Product Moment (PPM) correlation.  Converting the 

data to ranks first and then using Excel’s CORREL function will yield the Spearman Rank Correlation.  ACE 

contains a correlation report that will show the PPM correlation between user-selected elements of the 

estimate.  @RISK includes a function to measure correlation between any two distributions (input or 

forecast). 

A correlation measuring utility is included with the handbook (see Section 7.1.3).  This is an Excel 

workbook that will measure the Pearson Product Moment correlation from simulation trial data downloaded 

from any tool.  The correlation utility was used to measure the correlation generated in the Crystal Ball 

example model to create the correlation examples in this handbook. 

Figure 3-4 illustrates the results when measuring the correlation across WBS elements in the example model 

simulation before any correlation is applied.  The result shows the functional correlation present in the 

model.  The elements of Production have been rearranged to produce Figure 3-4 in order to make it easier to 

see the nature of the functional correlation in this phase of the model.  Training, Data, and Initial Spares were 

modeled as a factor of the Air Vehicle cost.  Not only does this account for the functional correlation 

between them and the Air Vehicle elements, but since they are estimated off of a common element (Air 

Vehicle) they are also correlated amongst themselves.  Unless there is evidence to do otherwise, since the 

correlations between them is very close to 0.3 (our default), no further correlation is necessary for those 

specific elements.  It may be seen, however, that there is a need to consider correlation between the Air 

Vehicle elements and the elements that are estimated as a function of duration due to the lack of functional 

correlation.  The elements that are a function of duration are not showing any correlation because in this 

model the leadership directed that there be no production duration uncertainty. 
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Figure 3-4  Measured Production Correlation Before Correlation is Applied 

3.3.5 Applied Correlation Example 

In the previous section, correlation within the Production phase was measured to help identify where it may 

be necessary to apply additional correlation across the model’s input distributions.  Where possible, it is 

recommended that a few large matrices be created rather than many small ones.  Our example model is small 

enough that both EMD and Production distributions can be defined in a single correlation matrix, as shown 

in Table 3-2.  Guided by correlation measurement and knowledge of the model, elements should be put in an 

order that help define correlations where they are appropriate.  It may be alarming to some to see the large 

number of empty cross correlation cells.  In particular, in the case of the below the line (BTL) items (data, 

training, spares, etc.), if the same team is performing those functions, it may be appropriate to capture them 

in one large group by populating the gray cells in Table 3-2.  

   Table 3-2  Example Model Applied Correlation Matrix  
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Applying correlation in any of the tools augments, rather than replaces, the functional correlation that is 

already present.  The upper table in Figure 3-5 shows the functional correlation across the production 

elements in the missile example before any additional correlation is applied.  The lower table illustrates the 

impact on measured correlation when the matrix in Table 3-2 was applied.  The impact on the missile 

production uncertainty results is also shown.  Note that the functional correlation associated with Training, 

Data, and Initial Spares increases even though no additional correlation is applied to those elements 

explicitly.  They increase because of the correlation applied to functionally related elements (Air Vehicle 

elements and their weights). 

   

Figure 3-5  Impact of Applied Correlation On Top of Functional Correlation  

Two excursions on Table 3-2 were performed to measure the impact of adding additional correlation.  The 

first excursion populated all the gray elements in Table 3-2.  The original matrix contained 115 correlations.  

In this first excursion, an additional 71 were applied (60% more correlations).  As shown in Figure 3-6, 

adding the 71 additional correlations had almost no effect on the S-curves.  In the range 30 to 70 percent 

probability, the impact was less than 1%.  This is because the use of factor methods already introduces 

significant functional correlation, obviating the requirement for more.  In the second excursion the entire 

matrix was populated, adding three times the original.  The impact is noticeable, but less than 3% in the 30 to 

70 percent probability range.  In our example, only 25% of the cells (115 out of a possible 465) capture over 

95% of the fully populated scenario.  A few large, well organized matrices will also help avoid applying 

inconsistent correlation.  

Also of note, this particular example model has many factor relationships inducing significant functional 

correlation.  The minimal impact of applied correlation demonstrates that if significant functional correlation 

can be built into the model, the requirement for applied correlation diminishes.  
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Figure 3-6  Impact of Adding Additional Correlations 

Measure the correlation present in the model WBS first then determine what should be applied. 

Create a few well organized, large correlation matrices rather than many small ones. 

Repair inconsistent matrices rather than letting the tool attempt to find a solution. 

Measure correlation again to verify expectations are met. 

3.4 OTHER INFLUENCES ON SIMULATION RESULTS 

3.4.1 Random Seed and Random Number Generators 

The random seed is a number that initializes the selection of numbers by a random number generator.  Given 

the same seed, a random number generator will generate the same series of random numbers each time a 

simulation is run.  Both Crystal Ball and @RISK, by default, pick a different random seed each time the 

simulation runs.  To avoid this, an initial random seed may be set by the user (ideally, using a seed generated 

by the tool).  However, if the location of various assumptions is changed on the worksheet, answers will still 

vary.  Additionally, if other workbooks are open that contain separate models, this can influence the random 

seed assignments.  ACE assigns a random seed to every uncertainty assumption and it is saved with the 

model.  When the assumption is moved, the random seed moves with it and, therefore, the random draw 

sequence is preserved. 

Changing the random seed (either manually or by allowing the tool to do so) will cause the percentile results 

to vary on the order of 0.5%.  Furthermore, it is not possible to get precise matches across tools since each 

uses a different random number generator and different methods for assigning random seeds. 

Where possible, let the tool select a random seed initially and then fix this seed in the model. 

It is important to document the random seed selected and if choices are available, the random number 

generator selected.  To promote consistency agencies are encouraged to define a random seed and random 

number generator. 
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3.4.2 Simulation Sampling Method 

Some tools allow the user to choose either Monte Carlo sampling or Latin Hypercube sampling (see 

Appendix A.10 for details).  Latin Hypercube draws random numbers more evenly and it will generally 

require fewer trials to obtain the same level of accuracy.  We recommend that the number of partitions equals 

the number of trials when using Latin Hypercube sampling.  Doing so helps ensure the entire distribution is 

sampled with fewer trials.  @RISK and ACE do not have a user setting for the number of partitions; both fix 

the number of partitions to the number of trials. 

3.4.3 Number of Trials (Iterations) 

The number of trials required to achieve reasonable accuracy is a function of many factors including: the 

complexity of the functional relationships, how many distributions are defined in the model, the degree of 

uncertainty applied, and the number of applied correlations. 

Reference 9 and 24 suggest that 10,000 trials are sufficient for cost uncertainty models and this number is a 

common standard throughout the cost community.  Most simulation tools have a feature to stop the 

simulation when selected convergence criteria are met.  For instance, both Crystal Ball and @RISK will test 

the mean, standard deviation or a selected percentile to determine when the statistic is estimated to be within 

a user defined percent of its actual value for a specified probability level.  However there are no known 

standards and there is no persistent record of how the test behaved at lower or a greater number of trials. 

A tool-independent Excel-based utility is available that 

provides a visual cue to model convergence (see Section 

7.1.4).  It begins with a 10,000 trial simulation.  Then the 

statistics of interest (in this case the 50 percentile, 70 

percentile and 90 percentile of Production) are calculated 

from the first 100, 200, 300 etc. trials and compared to the 

10,000 trial result.  The number of trials required for 

convergence may be visually observed from the resulting 

chart.  A convergence criterion of 0.5% for percentiles is 

shown here.  The concept is defined in detail in Reference 

65.  Investigation demonstrated that performing separate runs 

with different random seeds (rather than collecting all the 

data from one 10,000 trial run) made little difference to the 

results.  The example model built in @RISK, Crystal Ball 

and ACE was used to demonstrate tool independence.  

Extracting the simulation data from each tool to the utility 

demonstrates similar behavior as shown in Figure 3-7 

For the example model, 5,000 trials are required to obtain 

production results within 0.5% of the 10,000 trial result.  

However, relatively few iterations (500) still produces results 

within a few percent and this is more than sufficient for use 

while building and testing the model.  Even if the model 

takes no time to run 10,000 trials, running the convergence 

utility is important to verify convergence.  When CVs are 

very high and/or in the presence of many applied 

correlations, it may be necessary to run more than 10,000 

trials to create the final milestone estimates. 

Figure 3-7  Compare Convergence Test Across 

Different Tools  
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The convergence utility will, by definition, converge at 10,000 trials.  Consequently, there needs to be ample 

evidence of convergence by at 8-9000 trials (DoD agencies have reported that 5,000 is sufficient for many 

models).  If not, it is recommended that the 20,000 trial version of the utility be considered.  Additionally, 

50/70/90 percentiles were selected because this tends to cover the range of reported results.  0.5% was 

selected as the threshold because Reference 9 identified that stable percentile results may change by 0.5% by 

changing the random seed.  There is no reference for defining standard deviation convergence, but 1.5% 

seems like a reasonable target as it generally takes at least a 1.5% change in standard deviation to impact 

percentile results by 0.5%. 

While the utility gives a visual indication of convergence, it does not provide a mathematical basis for 

convergence confidence.  Tools like Crystal Ball and @RISK provide a feature to run the simulation until 

predefined criteria are met on one or more of the model forecasts.  The concept is to have the tool measure 

the chosen statistic(s) and stop the simulation when the difference is less than a specified interval at a defined 

confidence level.  Figure 3-8 illustrates criteria recommended by one agency: 95% confidence that the mean, 

standard deviation and 90 percentile are stable within 3% of their value.  For the example model, both the 

convergence utility and the Crystal Ball precision control identified convergence near 6,450 trials (@RISK 

model behaved similar).  If this type of feature is to be used, agencies should specify the required settings. 

 

Figure 3-8  Compare Convergence Utility to Precision Control in Crystal Ball 

Simulation settings such as sampling type (Monte Carlo vs. Latin Hypercube), random seed, correlation 

on/off and similar settings will have an impact on the simulation results. 

These and similar settings may not be saved with the model file.   

Agencies are encouraged to publish recommended settings for each tool that is used. 

Perform a convergence analysis to verify the number of trials required to develop a stable result. 
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3.5 REVIEW AND INTERPRET RESULTS WITH CORRELATION APPLIED 

3.5.1 Recommended Simulation Settings to Promote Consistency 

Simulation tools are unique and each comes with their own various default settings and assumptions.  To 

ensure simulation results are persistent between runs and workstations, the following default settings are 

recommended: 

 Sampling Method: Latin Hypercube or Monte Carlo 

 Trials:  10,000 trials is the industry default, but the model should be tested for convergence to verify 

the number of trials required to establish a stable result (see Section 3.4.3) 

 Latin Hypercube Partitions:  ACE and @RISK do not provide control over Latin Hypercube 

partitions.  Both these tools automatically create the same number of Latin Hypercube partitions as 

trials.  To facilitate comparison across tools, we recommend that as the standard. 

 Random Seed:  Every tool requires an initial random seed to begin the simulation process.  Allow 

the tool to generate the random seeds.  But when locking the estimate results is desired, select a tool-

generated or a user generated value for the random seed.  Unless one is selected, each simulation run 

will be different.  For Crystal Ball and @RISK, moving cells, inserting or deleting distributions, or 

adding an empty correlation matrix can change the random seed assignments throughout the model.  

ACE assigns and retains the random seed assigned to each distribution (the user can delete them and 

allow ACE to repopulate the random seed assignments). 

 Stop on Convergence:  Every tool uses a different approach to assess the stability of the model.  It is 

therefore recommended that a tool-independent utility like the one introduced in Section 3.4.3 be 

deployed for use within a given agency.  

If the tool’s guidelines are followed, the analyst will obtain the same CISM results regardless of which tool is 

used.  Figure 3-9 illustrates the same results from three different tools in the form of a cumulative 

distribution function (CDF) for the missile model. 

  

Figure 3-9  Compare Risk Analysis Results from Several Tools  

3.5.2 Comparing Simulation Results 

If the point estimate is found to behave appropriately, it is useful to run several simulations to get a sense of 

the contribution of key risk and uncertainty elements in the model.  Figure 3-10  illustrates how the S-curve 

gets steeper as schedule uncertainty, risk register elements, correlation, and CER uncertainty are 
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systematically removed from the model (the steepest curve representing uncorrelated input uncertainty).  The 

respective CVs are: 0.216, 0.188, 0.186, 0.116, and 0.076.  This type of comparison provides evidence the 

model is behaving as expected.  Figure 3-9 reports the CV of the Missile total to be 0.215 while Figure 3-10  

reports 0.216.  This is the difference between simulation results in BY$ (Figure 3-9) and TY$ (Figure 3-10). 

  

Figure 3-10  Compare Impact of Key Risk and Uncertainty Elements 

Construct the model to easily switch off the schedule uncertainty, risk register, and correlation in order to 

investigate the impacts of these key aspects of the model.   

In order to move cost and uncertainty data to a FICSM model (see Appendix B ), it will be necessary to 

generate CISM results with schedule and risk register contributions removed. 

3.5.3 Interpreting the Simulation Results 

Building a risk and uncertainty model is an iterative process.  As the process proceeds, it is useful to examine 

the coefficient of variation (CV) of the top-line of each phase of the estimate.  Examining lower-level 

elements is desirable; however, the range of acceptable CVs is much broader.  In general, analysts are likely 

to be able to compile meaningful ranges of acceptable CV for the overall estimate (by phase) by commodity. 

The CV statistic is provided by all the common tools.  The higher the CV, the wider the dispersion and the 

flatter the S-curve.  A low CV is indicative of a program with low or modest risks.  A high CV is indicative 

of a high-risk program.  Often an extremely low CV is an indication of very optimistic uncertainty ranges or 

a lack of correlation.  Likewise, extremely large CVs may be an indication of unusually broad distributions 

or too much correlation. 

The NCCA S-curve Tool (Reference 88) is available to compare an estimate to historical cost growth factors 

(CGFs) and the CVs on the CGFs.  Table 3-3 shows sample CGFs for historical programs by Phase and 

Commodity developed from that source’s data.  These are based on comparing initial and final SARs and 

calculating cost growth factors (where 1.0 equals no cost growth) adjusted for quantity.  The quantity 

adjustment utilized the Fischer method which is the square root of the product of the CGF adjusting the 

baseline estimate to reflect current quantities and the CGF adjusting the current estimate to reflect baseline 

quantities.  Table 3-4 shows the CVs on those CGFs.  The analyst should examine CGFs and their CVs from 

these two tables and the NCCA S-curve Tool to assess the reasonableness of their estimate’s CV. 

Practitioners are cautioned NOT to game their model in an attempt to match any particular value in these 

tables because individual program conditions vary.  The values are provided for cross-check guidance.  A 
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model with different values does not mean it is wrong.  But an explanation of an estimate’s CV far outside 

the range of values on these tables is warranted.  CVs for estimates at Milestone A are not tabulated due to 

sparse data but the source suggests CVs of 0.15 or higher than Milestone B CVs is reasonable. 

Table 3-3  NCCA SAR Growth Factors: Since 1969/ Since 1980/ Since 1990 (Effective December 2011) 

 

Mean Cost Growth Factor, RDT&E Estimates at MS B 
Ships/ 

Submarines
Aircraft

Missiles/ Guns/ 

Torpedoes
Space Electronics Vehicles All

BY$ All 1.35 / 1.36 / 1.18 1.65 / 1.72 / 1.89 1.62 / 1.62 / 1.78 1.43 / 1.47 / 1.47 1.40 / 1.40 / 1.41 1.75 / 1.52 / 1.47 1.54 / 1.54 / 1.62

Navy 1.35 / 1.36 / 1.18 1.99 / 2.24 / 2.63 1.23 / 1.15 / 1.21 1.17 / 1.17 / 1.17 1.45 / 1.45 / 1.38 1.89 / 1.89 / 1.89 1.55 / 1.61 / 1.71

Air Force  1.51 / 1.44 / 1.53 1.57 / 1.19 / 1.24 1.45 / 1.53 / 1.53 1.10 / 1.10 / 1.04 1.41 / 1.30 / 1.36

Army 1.27 / 1.32 / 1.36 1.95 / 2.12 / 2.35 1.37 / 1.37 / 1.25 1.70 / 1.40 / 1.30 1.61 / 1.62 / 1.67

DoD 1.87 / 1.87 / 2.01 1.87 / 1.87 / 2.01

TY$ All 1.52 / 1.52 / 1.24 1.84 / 1.81 / 2.02 1.74 / 1.62 / 1.78 1.59 / 1.53 / 1.53 1.42 / 1.42 / 1.46 2.02 / 1.63 / 1.50 1.67 / 1.59 / 1.67

Navy 1.52 / 1.52 / 1.24 2.25 / 2.44 / 2.89 1.35 / 1.16 / 1.22 1.23 / 1.23 / 1.23 1.47 / 1.47 / 1.44 2.01 / 2.01 / 2.01 1.71 / 1.72 / 1.83

Air Force  1.69 / 1.48 / 1.58 1.80 / 1.26 / 1.32 1.63 / 1.59 / 1.59 1.10 / 1.10 / 1.04 1.56 / 1.33 / 1.41

Army 1.33 / 1.36 / 1.40 2.02 / 2.09 / 2.29 1.38 / 1.38 / 1.29 2.02 / 1.50 / 1.29 1.69 / 1.63 / 1.67

DoD 1.95 / 1.95 / 2.11 1.95 / 1.95 / 2.11

Mean Cost Growth Factor, Procurement Estimates at MS B CV on Cost Growth Factor, Procurement Estimates at MS B
Ships/ 

Submarines
Aircraft

Missiles/ Guns/ 

Torpedoes
Space Electronics Vehicles All

BY$ All 1.27 / 1.30 / 1.38 1.37 / 1.36 / 1.55 1.47 / 1.33 / 1.36 1.33 / 1.42 / 1.42 0.97 / 0.97 / 1.03 1.89 / 1.46 / 1.41 1.33 / 1.24 / 1.34

Navy 1.27 / 1.30 / 1.38 1.31 / 1.33 / 1.54 1.31 / 1.15 / 1.20 0.89 / 0.89 / 0.89 1.25 / 1.25 / 1.25 0.95 / 0.95 / 0.95 1.28 / 1.25 / 1.35

Air Force 1.19 / 1.10 / 1.26 1.34 / 1.23 / 1.23 1.40 / 1.69 / 1.69 0.98 / 0.98 / 1.17 1.22 / 1.14 / 1.29

Army 1.78 / 2.04 / 2.14 1.72 / 1.57 / 1.57 0.99 / 0.99 / 1.06 2.02 / 1.54 / 1.50 1.53 / 1.37 / 1.44

DoD 0.81 / 0.81 / 0.81 0.81 / 0.81 / 0.81

TY$ All 1.47 / 1.49 / 1.78 1.55 / 1.33 / 1.51 1.89 / 1.37 / 1.38 1.48 / 1.41 / 1.41 0.98 / 0.98 / 1.06 2.38 / 1.56 / 1.48 1.57 / 1.28 / 1.38

Navy 1.47 / 1.49 / 1.78 1.48 / 1.32 / 1.53 1.60 / 1.18 / 1.15 0.92 / 0.92 / 0.92 1.23 / 1.23 / 1.23 1.06 / 1.06 / 1.06 1.48 / 1.32 / 1.45

Air Force 1.30 / 1.07 / 1.22 1.63 / 1.24 / 1.24 1.57 / 1.65 / 1.65 0.96 / 0.96 / 1.15 1.37 / 1.12 / 1.27

Army 2.13 / 1.93 / 2.05 2.38 / 1.66 / 1.66 1.03 / 1.03 / 1.12 2.57 / 1.64 / 1.57 1.91 / 1.42 / 1.50

DoD 0.80 / 0.80 / 0.80 0.80 / 0.80 / 0.80

Mean Cost Growth Factor, RDT&E Estimates at MS C
Ships/ 

Submarines
Aircraft

Missiles/ Guns/ 

Torpedoes
Space Electronics Vehicles All

BY$ All 1.19 / 1.20 / 1.00 1.21 / 1.21 / 1.13 1.26 / 1.27 / 1.08 1.86 / 1.94 / 1.38 1.17 / 1.19 / 1.19 1.30 / 1.30 / 1.30 1.27 / 1.28 / 1.16

Navy 1.19 / 1.20 / 1.00 1.37 / 1.37 / 1.21 1.17 / 1.17 / 1.05 1.12 / 1.12 / 1.12 1.13 / 1.13 / 1.09 1.84 / 1.84 / 1.84 1.25 / 1.26 / 1.14

Air Force 1.07 / 1.07 / 1.08 1.10 / 1.11 / 1.15 1.94 / 2.04 / 1.41 1.03 / 1.04 / 1.04 1.26 / 1.29 / 1.16

Army 1.06 / 1.06 / 1.06 1.40 / 1.40 / 1.05 1.20 / 1.20 / 1.20 1.21 / 1.21 / 1.21 1.24 / 1.24 / 1.13

DoD 2.31 / 2.31 / N/A 1.41 / 1.41 / 1.41 1.56 / 1.56 / 1.41

TY$ All 1.25 / 1.26 / 1.01 1.21 / 1.21 / 1.14 1.32 / 1.33 / 1.12 2.04 / 2.14 / 1.44 1.21 / 1.23 / 1.22 1.35 / 1.35 / 1.35 1.31 / 1.32 / 1.19

Navy 1.25 / 1.26 / 1.01 1.36 / 1.36 / 1.23 1.10 / 1.10 / 1.06 1.13 / 1.13 / 1.13 1.18 / 1.18 / 1.13 1.91 / 1.91 / 1.91 1.26 / 1.27 / 1.16

Air Force 1.09 / 1.09 / 1.10 1.16 / 1.18 / 1.24 2.15 / 2.26 / 1.48 1.03 / 1.04 / 1.04 1.33 / 1.36 / 1.20

Army 1.07 / 1.07 / 1.07 1.56 / 1.56 / 1.08 1.23 / 1.23 / 1.23 1.26 / 1.26 / 1.26 1.31 / 1.31 / 1.17

DoD 2.31 / 2.31 / N/A 1.45 / 1.45 / 1.45 1.59 / 1.59 / 1.45

Mean Cost Growth Factor, Procurement Estimates at MS C CV on Cost Growth Factor, Procurement Estimates at MS C
Ships/ 

Submarines
Aircraft

Missiles/ Guns/ 

Torpedoes
Space Electronics Vehicles All

BY$ All 1.12 / 1.12 / 1.18 1.07 / 1.08 / 1.12 1.13 / 1.13 / 1.17 1.57 / 1.65 / 1.10 0.99 / 1.03 / 1.05 1.11 / 1.11 / 1.11 1.11 / 1.12 / 1.12

Navy 1.12 / 1.12 / 1.18 1.09 / 1.09 / 1.06 1.12 / 1.12 / 1.08 1.03 / 1.03 / 0.94 1.06 / 1.06 / 1.12 1.36 / 1.36 / 1.36 1.10 / 1.10 / 1.11

Air Force 1.00 / 0.99 / 1.08 1.17 / 1.20 / 1.30 1.84 / 2.06 / 1.19 0.91 / 1.08 / 1.08 1.14 / 1.19 / 1.16

Army 1.24 / 1.42 / 1.42 1.08 / 1.08 / 1.13 0.99 / 0.99 / 1.01 1.07 / 1.07 / 1.07 1.08 / 1.09 / 1.12

DoD 1.01 / 1.01 / 1.01 1.01 / 1.01 / 1.01

TY$ All 1.12 / 1.13 / 1.29 1.06 / 1.07 / 1.10 1.18 / 1.19 / 1.24 1.90 / 2.05 / 1.14 1.06 / 1.11 / 1.13 1.06 / 1.06 / 1.06 1.14 / 1.16 / 1.16

Navy 1.12 / 1.13 / 1.29 1.08 / 1.08 / 1.05 1.16 / 1.16 / 1.12 1.04 / 1.04 / 0.92 1.36 / 1.36 / 1.51 1.38 / 1.38 / 1.38 1.14 / 1.15 / 1.18

Air Force 0.99 / 0.99 / 1.08 1.25 / 1.29 / 1.41 2.33 / 2.72 / 1.25 0.89 / 1.07 / 1.07 1.22 / 1.29 / 1.19

Army 1.19 / 1.37 / 1.37 1.14 / 1.14 / 1.21 0.95 / 0.95 / 0.96 1.01 / 1.01 / 1.01 1.06 / 1.08 / 1.10

DoD 1.03 / 1.03 / 1.03 1.03 / 1.03 / 1.03
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Table 3-4  NCCA SAR Growth Factor CVs: Since 1969/ Since 1980/ Since 1990 (Effective April 2011) 

 

Another approach to assessing CV reasonableness is to do so in the context of the Nunn-McCurdy breach.  

For a detailed discussion, including how breach values may appear on a program’s S-curve, see Appendix 

A.1.6. 

 CV on Cost Growth Factor, RDT&E Estimates at MS B
Ships/ 

Submarines
Aircraft

Missiles/ Guns/ 

Torpedoes
Space Electronics Vehicles All

BY$ All 0.42 / 0.46 / 0.25 0.86 / 0.94 / 0.95 1.09 / 1.30 / 1.35 0.48 / 0.50 / 0.50 0.47 / 0.47 / 0.39 0.45 / 0.27 / 0.28 0.82 / 0.89 / 0.95

Navy 0.42 / 0.46 / 0.25 1.04 / 1.09 / 1.04 0.32 / 0.23 / 0.24 0.48 / 0.48 / 0.46 0.16 / 0.16 / 0.16 0.81 / 0.89 / 0.95

Air Force 0.52 / 0.55 / 0.57 0.54 / 0.27 / 0.27 0.49 / 0.53 / 0.53 0.40 / 0.40 / 0.21 0.51 / 0.49 / 0.49

Army 0.35 / 0.41 / 0.44 1.34 / 1.43 / 1.44 0.48 / 0.48 / 0.25 0.52 / 0.27 / 0.26 1.04 / 1.12 / 1.23

DoD 0.38 / 0.38 / 0.30 0.38 / 0.38 / 0.30

TY$ All 0.56 / 0.62 / 0.27 0.93 / 1.03 / 1.03 0.96 / 1.18 / 1.23 0.58 / 0.54 / 0.54 0.48 / 0.48 / 0.42 0.65 / 0.37 / 0.35 0.82 / 0.88 / 0.93

Navy 0.56 / 0.62 / 0.27 1.08 / 1.16 / 1.10 0.42 / 0.22 / 0.23 0.49 / 0.49 / 0.49 0.17 / 0.17 / 0.17 0.88 / 0.98 / 1.03

Air Force 0.65 / 0.60 / 0.62 0.65 / 0.40 / 0.40 0.60 / 0.57 / 0.57 0.46 / 0.46 / 0.21 0.64 / 0.54 / 0.54

Army 0.34 / 0.41 / 0.44 1.17 / 1.31 / 1.33 0.47 / 0.47 / 0.28 0.75 / 0.43 / 0.35 0.94 / 1.01 / 1.12

DoD 0.40 / 0.40 / 0.32 0.40 / 0.40 / 0.32

CV on Cost Growth Factor, Procurement Estimates at MS B
Ships/ 

Submarines
Aircraft

Missiles/ Guns/ 

Torpedoes
Space Electronics Vehicles All

BY$ All 0.36 / 0.40 / 0.45 0.44 / 0.51 / 0.45 0.37 / 0.43 / 0.43 0.55 / 0.86 / 0.86 0.41 / 0.41 / 0.25 0.66 / 0.24 / 0.25 0.59 / 0.47 / 0.44

Navy 0.36 / 0.40 / 0.45 0.50 / 0.58 / 0.52 0.43 / 0.43 / 0.48 0.42 / 0.46 / 0.47

Air Force 0.41 / 0.43 / 0.39 0.26 / 0.31 / 0.31 0.55 / 0.95 / 0.95 0.40 / 0.40 / 0.25 0.40 / 0.48 / 0.44

Army 0.28 / 0.23 / 0.24 0.36 / 0.46 / 0.46 0.45 / 0.45 / 0.20 0.64 / 0.19 / 0.20 0.52 / 0.45 / 0.40

DoD 0.32 / 0.32 / 0.32 0.32 / 0.32 / 0.32

TY$ All 0.72 / 0.77 / 0.78 0.50 / 0.52 / 0.47 0.60 / 0.44 / 0.46 0.59 / 0.99 / 0.99 0.43 / 0.43 / 0.31 0.99 / 0.28 / 0.28 0.74 / 0.55 / 0.53

Navy 0.72 / 0.77 / 0.78 0.55 / 0.61 / 0.55 0.79 / 0.44 / 0.52 0.66 / 0.63 / 0.64

Air Force 0.52 / 0.44 / 0.41 0.36 / 0.38 / 0.38 0.58 / 1.13 / 1.13 0.41 / 0.41 / 0.27 0.49 / 0.52 / 0.50

Army 0.28 / 0.23 / 0.23 0.54 / 0.43 / 0.43 0.48 / 0.48 / 0.30 0.97 / 0.25 / 0.26 0.74 / 0.44 / 0.39

DoD 0.38 / 0.38 / 0.38 0.38 / 0.38 / 0.38

CV on Cost Growth Factor, RDT&E Estimates at MS C
Ships/ 

Submarines
Aircraft

Missiles/ Guns/ 

Torpedoes
Space Electronics Vehicles All

BY$ All 0.42 / 0.43 / 0.11 0.56 / 0.56 / 0.22 0.43 / 0.43 / 0.16 0.89 / 0.90 / 0.36 0.19 / 0.19 / 0.19 0.22 / 0.22 / 0.22 0.63 / 0.55 / 0.23

Navy 0.42 / 0.43 / 0.11 0.71 / 0.71 / 0.29 0.25 / 0.25 / 0.09 0.19 / 0.19 / 0.18 0.52 / 0.53 / 0.25

Air Force 0.15 / 0.15 / 0.15 0.21 / 0.23 / 0.24 0.89 / 0.90 / 0.37 0.06 / 0.08 / 0.08 0.69 / 0.72 / 0.27

Army 0.09 / 0.09 / 0.09 0.56 / 0.56 / 0.09 0.12 / 0.12 / 0.12 0.15 / 0.15 / 0.15 0.37 / 0.37 / 0.13

DoD 0.24 / 0.24 / 0.24 0.30 / 0.30 / 0.24

TY$ All 0.62 / 0.63 / 0.12 0.56 / 0.56 / 0.24 0.54 / 0.54 / 0.22 1.00 / 1.01 / 0.37 0.21 / 0.22 / 0.22 0.24 / 0.24 / 0.24 0.69 / 0.63 / 0.25

Navy 0.62 / 0.63 / 0.12 0.72 / 0.72 / 0.30 0.11 / 0.11 / 0.11 0.23 / 0.23 / 0.22 0.57 / 0.57 / 0.26

Air Force 0.17 / 0.17 / 0.18 0.30 / 0.31 / 0.33 1.00 / 1.00 / 0.38 0.06 / 0.08 / 0.08 0.81 / 0.84 / 0.30

Army 0.11 / 0.11 / 0.11 0.70 / 0.70 / 0.12 0.14 / 0.14 / 0.14 0.18 / 0.18 / 0.18 0.49 / 0.49 / 0.15

DoD 0.27 / 0.27 / 0.27 0.31 / 0.31 / 0.27

CV on Cost Growth Factor, Procurement Estimates at MS C
Ships/ 

Submarines
Aircraft

Missiles/ Guns/ 

Torpedoes
Space Electronics Vehicles All

BY$ All 0.19 / 0.20 / 0.23 0.27 / 0.27 / 0.20 0.19 / 0.19 / 0.18 0.70 / 0.74 / 0.14 0.46 / 0.45 / 0.48 0.16 / 0.16 / 0.16 0.55 / 0.35 / 0.27

Navy 0.19 / 0.20 / 0.23 0.23 / 0.23 / 0.06 0.15 / 0.15 / 0.18 0.13 / 0.13 / N/A 0.69 / 0.69 / 0.82 0.28 / 0.28 / 0.30

Air Force 0.26 / 0.27 / 0.22 0.26 / 0.26 / 0.21 0.71 / 0.73 / 0.07 0.32 / 0.23 / 0.23 0.49 / 0.50 / 0.21

Army 0.41 / 0.30 / 0.30 0.14 / 0.14 / 0.10 0.37 / 0.37 / 0.39 0.14 / 0.14 / 0.14 0.27 / 0.26 / 0.27

DoD 0.35 / 0.35 / 0.35 0.35 / 0.35 / 0.35

TY$ All 0.36 / 0.37 / 0.42 0.32 / 0.31 / 0.20 0.24 / 0.24 / 0.24 0.97 / 0.99 / 0.18 0.69 / 0.68 / 0.73 0.17 / 0.17 / 0.17 0.64 / 0.53 / 0.39

Navy 0.36 / 0.37 / 0.42 0.32 / 0.32 / 0.05 0.20 / 0.20 / 0.21 0.16 / 0.16 / N/A 0.95 / 0.95 / 1.09 0.45 / 0.46 / 0.51

Air Force 0.29 / 0.30 / 0.24 0.30 / 0.30 / 0.25 0.95 / 0.93 / 0.08 0.36 / 0.29 / 0.29 0.72 / 0.73 / 0.26

Army 0.39 / 0.25 / 0.25 0.22 / 0.22 / 0.22 0.37 / 0.37 / 0.39 0.13 / 0.13 / 0.13 0.28 / 0.27 / 0.28

DoD 0.39 / 0.39 / 0.39 0.39 / 0.39 / 0.39
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Table 3-5 shows the CV results for the missile example.  If the mean or standard deviation and the CV is 

unavailable, the analyst (or reviewer) can estimate the CV by calculating the percentage difference between 

the 80% and the 50% probability level.  In the case of the missile example, only twice is the estimate for CV 

different than the actual CV by more than 0.03.  This rule of thumb is a handy way to quickly estimate or 

validate CV. 

Another indicator of the quality of the uncertainty assessment is the probability level of the point estimate.  

In Table 3-5, the probability level of the point estimate is reported in parentheses.  The point estimate 

generally falls in the 10% to 30% probability range.  When the point estimate probability level is very low 

this is often an indication that the CV may also be very low (i.e. insufficient uncertainty).  When the point 

estimate probability level is very high, this can be an indication that the point estimate may already be 

padded with some amount of uncertainty.  

Table 3-5  Example Model CV Results 

   

Select a benchmark CV using the NCCA S-curve Tool to assess an estimate’s overall dispersion. 

Shaded cells mark estimated CVs that are more than 0.03 different than the actual.

WBS Point Estimate Mean Std Dev CV

80% /

50% 50.00% 80.00%

Missile System TY$ $ 276,893 (10%) $365,333 $78,884 0.22 0.20 $353,524 $422,525

    EMD TY$ $ 88,102 (11%) $140,417 $52,654 0.38 0.34 $130,228 $174,642

    Production & Deployment TY$ $ 188,792 (16%) $224,916 $37,027 0.17 0.15 $220,985 $254,080

Missile System $ 246,836 (10%) $325,183 $70,260 0.22 0.20 $314,740 $376,245

    Engineering and Manufacturing Development$ 83,539 (12%) $130,683 $47,692 0.37 0.33 $121,567 $162,083

        Air Vehicle $ 14,944 (24%) $28,615 $21,080 0.74 0.72 $22,954 $39,533

            Design & Development $ 12,000 (26%) $24,380 $20,409 0.84 0.85 $18,752 $34,725

            Prototypes $ 2,944 (20%) $4,235 $1,516 0.36 0.36 $3,975 $5,412

        Software $ 31,500 (33%) $44,497 $23,620 0.53 0.52 $39,641 $60,344

        System Engineering $ 17,500 (9%) $27,113 $8,293 0.31 0.30 $25,693 $33,350

        Program Management $ 15,000 (14%) $20,528 $5,395 0.26 0.26 $19,672 $24,762

        System Test and Evaluation $ 1,766 (8%) $3,654 $1,683 0.46 0.48 $3,289 $4,866

        Training $ 897 (16%) $2,038 $1,551 0.76 0.74 $1,618 $2,822

        Data $ 1,196 (17%) $2,714 $2,054 0.76 0.75 $2,156 $3,775

        Peculiar Support Equipment $ 736 (8%) $1,524 $703 0.46 0.47 $1,379 $2,021

    Production & Deployment $ 163,297 (16%) $194,499 $31,984 0.16 0.15 $191,119 $219,721

        Air Vehicle $ 104,826 (18%) $127,291 $25,142 0.20 0.18 $124,490 $147,286

            Airframe $ 21,651 (35%) $25,477 $7,692 0.30 0.30 $24,570 $32,055

            Propulsion $ 21,849 (32%) $24,056 $4,541 0.19 0.16 $23,617 $27,360

            Guidance $ 27,810 (19%) $37,322 $10,274 0.28 0.28 $35,949 $46,000

            Payload $ 17,246 (31%) $19,607 $4,195 0.21 0.20 $19,204 $22,954

            Air Vehicle IAT&C $ 16,269 (41%) $20,830 $11,501 0.55 0.54 $18,270 $28,199

        System Engineering $ 12,000 (40%) $12,442 $1,363 0.11 0.11 $12,347 $13,682

        Program Management $ 10,000 (40%) $10,369 $1,136 0.11 0.11 $10,289 $11,402

        System Test and Evaluation $ 5,000 (33%) $5,369 $690 0.13 0.13 $5,296 $6,000

        Training $ 4,193 (8%) $6,587 $1,972 0.30 0.29 $6,295 $8,133

        Data $ 4,193 (8%) $6,036 $1,475 0.24 0.22 $5,855 $7,165

        Peculiar Support Equipment $ 7,634 (50%) $7,634 $2,039 0.27 0.22 $7,635 $9,350

        Initial Spares and Repair Parts $ 15,451 (33%) $18,771 $6,090 0.32 0.30 $17,821 $23,238
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3.6 ALLOCATE AND TIME PHASE PROBABILITY ADJUSTMENT DOLLARS 

3.6.1 What is a Probability Adjustment? 

For the purposes of convenience and to serve as a reference terminology for future calculations described in 

this handbook, probability adjustment (PA) is defined as the amount of funds needed to bring the point 

estimate value up to a selected probability level from the simulation results.  The difference between the 

point estimate and selected estimate, probability adjustment, is illustrated in Figure 3-11. 

  

Figure 3-11  Defining “Probability Adjustment” Based on Point Estimate 

To calculate PA dollars, a desired probability level or specific budget must be selected.  This value may be 

mandated or it may be simply an organizational practice.  A common practice is to select the mean.  An 

advantage of selecting the mean is that it will sum through the WBS without the need for an allocation 

process.  A consequence is that every element in an estimate, each alternative, and each project mean result 

will be at a different probability level. 

3.6.2 Purpose of Allocating PA Dollars 

Summing child WBS elements, all at a specific probability level, into parent elements will result in 

unintended probability levels at the parent levels throughout the WBS as illustrated in Table 3-6.  This is 

because once costs are modeled in probabilistic terms, summing elements is a matter of summing 

distributions – not values.  First column 1 sums the point estimate through the WBS elements.  Note however 

each element’s point estimate result is at a different probability level (the probability is shown in brackets).  

When summing distributions, only the means of distributions will sum to a total mean (column 2).  But note 

the probability of each mean result in column 2.  The means sum, but each element is at a different 

probability.  Column 3 shows the result of a given probability from the simulation result (in this case the 

58% EMD and 58% Production) and then the child elements are adjusted such that they sum to their parent.  

Note the range of probabilities across all the elements of the allocated results (column 3) is less than the 

range of probabilities when reporting the mean (column 2). The remaining columns in Table 3-6 illustrate 

that selecting a given probability level does not address the situation.  Column 4 is the 30% simulation result 

from every element in the WBS.  In column 5 each parent row is the sum of column 4’s 30% child elements 

and note that the resulting sum is different than the 30% parent value.  For probabilities less than the mean, 

the sum will be less than the simulation result.  Columns 6 and 7 illustrate the same situation if a probability 

level near the mean is chosen and columns 8 and 9 illustrate the same situation if a probability level above 

the mean is chosen.  Near the mean, the difference gets smaller (compare the difference between columns 4 

and 5 with the difference between 6 and 7).  Above the mean, the sum of the children returns a result higher 
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than the simulation result (see columns 8 and 9).  The following section explains how to achieve allocated 

results. 

PA dollars are the difference between the point estimate and a selected result. 

The point estimate and mean sum; percentile results must be allocated to sum. 

 

Table 3-6  The Requirement to Allocate Illustrated 

 

3.6.3 How to Allocate PA Dollars 

The first step in the PA allocation process is to determine at what level in the WBS the PA dollars are to be 

managed.  That is, to select the level in the WBS where dollars cannot be shared with other elements at the 

same level (e.g., development dollars cannot be shared with production dollars and vice versa).  In our 

example model, the appropriation level is selected.  Others may choose to manage PA dollars at a lower level 

(e.g., at the prime contractor level in development and/or production if there are two or more).  

By choosing to manage the PA dollars at the appropriation level, it means the simulation statistical results at 

this level will be the basis for calculating PA dollars and starting point to perform PA allocation should 

budgets need to be set at lower levels.  Allocation is not necessary when the mean is the selected estimate. 

Once the WBS levels from which the PA will be managed are determined, select the desired probability level 

of the simulation results.  The difference between the point estimate and the simulation result at the selected 

probability level are the PA dollars to be allocated to lower-level elements.  Put another way, the child 

elements need to sum to the selected probability level.  While manual, ad hoc changes to child elements can 

achieve this purpose, it is preferred to follow a defendable and repeatable allocation scheme that allocates PA 

dollars to lower-level elements in a consistent manner.  Methods vary from simple business rules to elaborate 

mathematical allocation schemes.  The “Needs” (Reference 54) allocation approach is one such method and 
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it is summarized in Appendix A.12.2.  Whichever PA allocation method is chosen, it should be consistent 

with the agency’s objectives for the process.  The following objectives were selected for the example model 

presented in this handbook. 

 This example allocates PA dollars from the appropriation level.  This means the results for the EMD 

and Production total will be the simulation result for the selected probability level.  Allocating from 

the total overall would imply that EMD and Production funds can be exchanged.  The goal is to 

allocate from the level where PA dollars are managed.  In this case, that is at the appropriation totals. 

 The lower-level EMD and Production results at the selected probability level will not sum.  Only the 

mean will sum.  If a probability level is selected, the lower-level elements need to be adjusted to 

cause them to sum. 

 Some methods allocate PA dollars to the point estimate at lower levels.  This method will adjust the 

lower-level probability results directly.  For example, if the result is requested at the 85% probability 

level, begin with the simulation results for all elements at that probability level. 

 The allocation method should be influenced by the uncertainty and correlation of lower WBS levels 

 Some methods are designed to not allow any WBS element result to be less than the point estimate.  

This method adopts a different premise.  It will treat all elements the same, meaning all elements will 

gravitate towards the selected probability level, even if it is lower than the point estimate.  This 

significantly simplifies the algorithm.  

A simple allocation scheme that is consistent with these objectives is to make the adjustment directly to the 

simulation probability results (not the point estimate).  This process follows steps illustrated in Figure 3-12: 

 Select the level in the WBS from which PA dollars will be allocated (e.g., EMD and Production) 

 Generate the simulation results in BY dollars for all levels in the WBS (1) 

 Sum the immediate subordinate probability results (2) 

 Compute the difference between the sum of the children and the parent value (3).  When performed at 

the level from which PA dollars are allocated, this is the percentile result minus the sum of children 

(1-2).  At lower levels in the WBS this is the allocated result minus the sum of children (7-2). The 

difference represents the dollars to be “allocated” to the subordinates to cause them to sum. 

 Using the standard deviation (4), prorate (6) the amount to allocate (3) to compute the adjustment for 

each child (6) 

 Apply the adjustment (6) to the element percentile result (1) to develop the allocated result (7). 

Complete the allocated results by summing to the parent levels. 

 Levels above the WBS chosen as fixed are merely the sum of their children.  In this case the total 

Missile System will now be the sum of the EMD and Production statistical result, meaning it will no 

longer match its statistical result.  And it should not be expected to match since the EMD and 

Production dollars have been fixed to their statistical results. 
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Figure 3-12  A PA Dollar Allocation Process 

3.6.4 How to Time Phase Allocated PA Dollars 

Once the PA dollars have been calculated and allocated, the next step is to determine how the PA dollars 

should be time-phased.  A common approach is to layer the PA dollars on top of the phased point estimate 

results (see Reference 84).  Having calculated PA dollars for each WBS element and chosen that they can be 

phased over the point estimate schedule, there are several approaches to phase the PA dollars. 

 Algorithm at Lowest Levels: The analyst may consider developing phasing methods at the lowest 

level that are influenced by the probability level requested.  Specifically, the method can cause the 

schedule to contract or expand with the probability level requested. 

 Specific time: The analyst may consider time-phasing the PA dollars after a specific “risky” event.  

An example might be after the critical design review or the first flight test of a missile system.  If a 

program is underway and the budget in the near-term years is inflexible, then the analyst can append 

the dollars to years beyond the current time-phased point estimate.  This is particularly well-suited for 

situations where the uncertainty issues, when manifest, will require additional schedule (i.e. longer 

program duration) to address.  

 Backload: If the near-term budget is set or there is little chance of consuming PA dollars early in the 

project, it is advisable to backload PA dollars into the later years of the phase 

 Frontload:  When it is apparent that the greatest uncertainty is early in the project, it is advisable to 

frontload the PA dollars 

 Prorate: The analyst needs to make an effort to identify when the uncertainty will occur and choose 

one of the previous methods.  When there is no evidence to do otherwise, prorating PA dollars across 

the point estimate phased result is recommended.  Proration is a common approach for the Production 

estimate. 

It is often inappropriate to spread the PA dollars across the PE schedule.  For example, the mean cost may 

not be executable over the PE schedule.  Where possible, consideration should be made to phase the PA 
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dollars over a commensurate schedule (for instance, phase mean dollars over the mean schedule).  If costs 

are to be phased over shorter than appropriate schedules, a cost penalty factor should be considered. 

Table 3-7 illustrates the a two-step process to arrive at PA allocated TY phased results.  In this case, the PA 

BY dollars are prorated over the point estimate schedule.  The BY to TY factor is applied by year to arrive at 

the allocated TY phased result. 

Table 3-7  PA Dollars Phased over the Point Estimate Schedule 

 

3.6.5 Key Modeling Considerations When Time Phasing PA Dollars 

A first step is to determine which elements of the model will be subject to schedule uncertainty.  The next 

decision is to determine how (or if) elements are linked.  Our example model includes two overarching 

elements: EMD and Production.  Should they both be subject to schedule uncertainty?  Should Production 

start be linked to EMD end?  These are key modeling considerations.  Once a result is obtained, the analyst 

has to decide how the PA dollars should be spread, and over what schedule in order to develop a budget 

estimate.  There are many possible combinations, three are described here and summarized in Table 3-8: 

1. EMD Duration Uncertainty, Prorate over PES only 

o Simulation:   RDTE and Production schedules are disconnected in the simulation model.  RDTE 

slips do not influence start of Production in the simulation.  No attempt to influence Production 

rate or duration through risk or uncertainty.  (Our example model is built this way.) 

o Budget Estimate: RDTE PA dollars are spread across the RDTE PES.  Production dollars are 

spread across Production PES. 

2. EMD Duration Uncertainty, Influence Prod Start, Prod Duration Uncertainty 

o Simulation:  RDTE and Production schedules are connected in the simulation model.  RDTE 

slips do influence the start of Production in the simulation.  Production duration and production 

rates are influenced by risk and uncertainty. 

o Budget Estimate:   RDTE PA dollars are spread across the RDTE mean schedule.  Production 

starts in the same year EMD ends.  Production PA dollars are spread across its mean schedule. 

3. Full Cost/Schedule Integration:  This is the same as the second option, except care is taken to 

separate time dependent and time independent costs.  This is only possible in a full FICSM model 

(see Appendix B ).  
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Table 3-8  Summary of Some Simulation and PA Dollar Phasing Options  

 

For this handbook, approach 1 is suggested as the preferred way to fully simulate the program, particularly 

for early programs where the EMD start is far in the future.  The example CISM model models EMD start 

and EMD duration uncertainty.  It has a fixed start and finish date for production, and production start is not 

linked to EMD end.  However, the model was designed with a switch to allow Production start to be linked 

with EMD end so that when the simulation draws long EMD durations, Production starts later.  It would also 

be simple enough to design the model such that annual buy quantities have an uncertain production rate and 

thus introduce duration uncertainty into production phase.  While CISM models based on approach 1 may be 

appropriate for developing budget estimates, approach 2 or variations on it should be explored (and as 

appropriate presented to decision makers) to gain a sense of how duration uncertainty may affect both the 

total cost and the overall schedule.  Depending on the history, situation, and practical realities for the project, 

a defendable case can likely be made for variations on any of these approaches. 

4.0 HOW TO PRESENT THE CISM RISK AND UNCERTAINTY STORY 

This section presents example charts and tables to help explain the risk and uncertainty analysis to two 

different groups:  technical reviews with engineers and other cost analysts; and management reviews with 

program staff and decision makers.  Each type of review requires a different level of detail to present the risk 

and uncertainty analysis and the impact of the analysis on cost estimating results.  Technical reviews focus 

on a presentation of the data, the analysis methods, the estimate drivers, and the quality of the results.  

Management reviews include less technical detail, and focus more on the cost results as modified with risk 

and uncertainty. 

The charts and tables shown below are representative examples only. The evolving needs of each project and 

each organization will dictate specific chart requirements. 

4.1 TECHNICAL REVIEW 

4.1.1 Overview 

Technical reviews are a process of subjecting an estimate to the scrutiny of others.  Technical reviews are 

used to communicate status, identify estimate weaknesses, suggest alternative approaches, and coordinate 

activities within multi-disciplinary or interagency estimating teams.  Reviews may also allow peers from 

outside the project to bring objectivity and a fresh viewpoint to the estimate.  The detailed story told by the 

charts described in this section enables consensus-building within the estimating team which then forms the 

basis for the simple, yet complete overview prepared for decision makers.  Reporting to colleagues or 

technical management allows the analyst to choose from a wide variety of the analyst’s favorite and most 

technically compelling charts and tables.  As a minimum, the technical presentation should provide an 

explanation of the risk analysis as described on Table 4-1.  
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Table 4-1  Technical Review Content and Explanation 

CONTENT EXAMPLE CHART 

Overall Review of the Estimate 

(Impact on Total Cost or Cost by Phase) 

S-curve showing multiple curves to convey impact of key 

uncertainty elements (e.g., Figure 4-1) 

Scatter plot of cost vs. schedule to convey dispersion breadth 

(e.g., Figure 4-2) 

Uncertainty Drivers 

 By WBS Element 

 

 By Input Variable or CER 

Pareto chart to identify the most expensive lowest-level WBS 

elements (e.g., Figure 4-3) 

Tornado chart to identify the uncertain variables that most 

influence the phase total (e.g., Figure 4-5) 

Distributions used in the estimate and their parameters (e.g., 

Table 2-10) 

Sensitivity Analysis 

 

Sensitivity charts to identify the elements that contribute the 

most to phase (e.g., Development, Production or Operating and 

Support) uncertainty (e.g., Figure 4-6) 

4.1.2 S-curve and Scatter Plots 

The S-curve plot shown in Figure 4-1 (a repeat of Figure 3-10) provides an overview of the impact of broad 

categories of uncertainty elements.  This can form the starting point for discussing the structure of the model 

and its behavior.  Specifically, charts that follow should defend the modeling techniques, CERs, duration 

impacts, uncertainty, and correlation choices. 

  

Figure 4-1  Compare Impact of Key Risk and Uncertainty Elements 
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Another useful chart to support an overview discussion of the uncertainty in a model is the scatter plot to 

provide a visual reference for the dispersion of the results from multiple simulation runs.  For example: 

Figure 4-2 illustrates two scatter plots where each draw’s EMD cost is plotted against EMD end date (on the 

left panel) and also EMD duration (on the right panel) in months.  The CV for date is remarkably low 

because a date is based upon a number like 43,909 (19 March 2020, the mean date).  Note: Even a tiny CV of 

0.011 represents a standard deviation of 483 days.  The right image is the same chart with EMD duration 

expressed in months with a CV of 0.207 which represents a standard deviation of almost fifteen months.  A 

utility to create these charts is provided with this handbook.  See Section 7.1.5 for details. 

   

Figure 4-2  Scatter Plot Examples 

4.1.3 Driver Analysis Overview 

There are several reporting tools available to help identify cost and schedule drivers.  There are various 

options for running these tools and the most fundamental is which estimate should be the subject of the 

analysis.  Too often driver analysis is performed on the point estimate in constant year dollars because that is 

what most tools will do by default.  The analyst is encouraged to investigate both BY and TY driver analysis. 

The following tools will be discussed: 

 Pareto:  identifies those WBS elements that contribute the most to the target WBS total 

 Tornado: identifies the uncertain variables that most influence the target WBS total 

 Sensitivity: identifies the elements that contribute the most to the target row uncertainty.  The 

sensitivity analysis can focus on finding the child WBS elements (contributors) that contribute the 

most to the total uncertainty or finding the estimating method inputs (drivers) that contribute most to 

the total uncertainty.  

4.1.4 Pareto Chart 

The Pareto chart identifies the most expensive lowest level elements in the estimate WBS to convey specific 

activities, resource or program functions that drive overall program cost.  An example Pareto based upon a 

point estimate in BY dollars and the mean estimate in TY dollars is illustrated in Figure 4-3.  Note: As can 

be seen in this figure, the chart will yield a different message depending on the estimate under scrutiny.  The 
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TY Pareto captures the impact of inflation based on how the estimate is phased.  The analyst is encouraged 

to consider both results to assess the impact of how the dollars are phased influences the results. 

 

Figure 4-3  Pareto Charts of the BY Point Estimate and TY Mean 

A typical way to speak to Figure 4-3 is: 

 Since the budget is based upon the mean result in TY dollars, a Pareto chart was developed based 

upon the mean TY dollar result. 

 Software is by far the most expensive single element in the EMD phase. 

 The top four items (Software, System Engineering, Design and Development, and Program 

Management) account for the vast majority of the EMD cost.  These are the elements that should be 

the focus of any cost model refinement or risk mitigation plans.  

Figure 4-4 is an example of a variation on the Pareto chart.  The concept was obtained from the 2010 Army 

Cost Analysis Handbook (Reference 69).  The chart provides insight on how the probability selected for the 

estimate will influence the importance associated with subordinate WBS elements.  Note that the rank order 

below EMD Design changes when the estimate is considered in TY$.  For instance, EMD System 

Engineering falls from fourth in the BY chart to sixth in the TY chart.  For this reason, it is recommended 

that these charts be considered in TY$.  It is further recommended that basing this chart on TY allocated 

results should be considered if something other than prorate is used to phase the PA dollars. 

 

Figure 4-4  Stacked Pareto Charts Based on BY and TY Simulation Statistical Results 
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A typical way to speak to Figure 4-4 would be: 

 This chart (the TY version) reports the statistical results (not the allocated results) for the top 

contributors to the total missile system cost
8
 

 The colors on the bars give a sense of how many dollars are required to move from one probability 

level to the next 

 The WBS elements in Figure 4-4 are sorted on the 90% probability result.  By doing so, the impact 

of low probability risk register items is captured.   

 If chart was sorted on the point estimate or 50% results (rather than the 90%), EMD Design and 

Development falls from third to tenth.  By sorting on a high percentile, the chart reveals those items 

that warrant close attention in order to avoid potentially serious cost overruns. 

4.1.5 Tornado Chart 

Tornado charts rank the uncertainty distributions that have the most influence on a specific element’s point 

estimate result.  The Tornado chart illustrates the swing between the maximum and minimum forecast values 

for each variable.  Input distributions that have the largest impact on the distribution of the selected output 

will generate the longest bars in the graph.  The variable that causes the largest swing is displayed at the top 

and the variable that causes the smallest swing is displayed at the bottom.  This chart helps identify the 

distributions that have the most impact on the total.  However, the analysis is performed one element at a 

time.  For instance, when payload weight is tested, other weights (like airframe or propulsion) are not 

changed to be consistent.  For this reason, the Tornado chart alone is insufficient to find uncertainty drivers. 

Crystal Ball begins by finding all the distributions defined in the model.  @RISK and ACE begin with just 

those distributions that are functionally related to the element under analysis (target).  Crystal Ball and 

@RISK begin the Tornado analysis process by determining the 10 and 90 percentile of each distribution to 

be evaluated.  ACE takes it a step further by obtaining the 10 and 90 percentile of each element that is 

functionally related to the target from the simulation.  This means the combined applied and inherited 

uncertainty is considered when defining the 10 and 90 percentile bounds for the analysis.  So in Crystal Ball 

and @RISK, the most important distributions are found.  In ACE, the most important variables are found. 

The Tornado analysis generates two point estimates for each driver it finds, one using the variable at the low 

end and another at the high end of the specified range (by default, the 10 and 90 percentile).  All other 

variables are held constant.  The idea is to find the single variable that has the most influence on the total.  

Figure 4-5 illustrates the Tornado chart developed in BY and TY dollars.  In this model, the rank order does 

not change.  But that is not always the case.  Since budgets are reported in TY$, it is recommended that 

Tornado analysis be performed on TY results using the 10/90 uncertainty range. 

                                                 
8
 It is more appropriate to build this chart on a specific phase like development, production or operations and support.  The 

example is built against the total system cost for illustrative purposes only. 
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Figure 4-5  Compare Tornado Performed on PE BY and PE TY   

A typical way to speak to a Tornado chart is: 

 This chart identifies the uncertain variables in the model that have the most influence on the total cost 

 Uncertainty distributions associated with CERs are filtered out of this analysis in order to focus on 

finding the cost drivers (input variables) that have the most impact on the total cost, in this case EMD 

 The analysis is performed on the TY point estimate results in order to ensure any cost impact due to 

phasing is captured 

 The analysis calculates the EMD TY point estimate for each variable at the 10 percentile and 90 

percentile values
9
.  The range of the TY point estimate is the basis for the way the results are sorted.  

Hence, the variable that has the most impact is listed at the top of the chart.  Lesser impacts are 

plotted in order below giving the chart a “tornado” appearance. 

 The Tornado analysis is driven by modeled uncertainty and does give a sense of which drivers have 

the most influence on total uncertainty.  A sensitivity analysis will support (or not) these findings.  

4.1.6 Sensitivity Chart 

The objective of a Sensitivity Analysis is to find the most important contributors to the target element 

uncertainty.  Use these charts to determine which elements in the model warrant detailed discussion.  This 

may or may not report the same elements as the Tornado.  There are two types of uncertainty elements 

decision makers may be interested in: 

 Cost Contributor Uncertainty: Find WBS elements that contribute the most to total uncertainty.  

There is a closed form solution to calculate the contribution of each WBS element uncertainty to the 

total.  It is based on the fact that the sum of the variances, adjusted for the Pearson Product Moment 

correlation between them, will sum to the simulation total variance in a WBS.  Consequently, it is 

possible to calculate the correlation adjusted (combined functional plus applied) contribution by 

element and thus directly calculate each WBS element’s contribution to the total.  ACEIT provides 

this chart, the other tools do not, but it is simple to create. 

                                                 
9
 Note that for Crystal Ball and @RISK, this is the 10/90 percentile of the uncertainty distribution associated with the variable. For 

ACE, it is the 10/90 percentile that is the result from all distributions and any inherited uncertainty associated with the variable. 
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 Cost Driver Uncertainty: Find input variables that contribute the most to total uncertainty.  Every 

tool provides this feature and they all approach the problem differently.  That means there will be no 

way to obtain consistent results across tools without specifying a specific process.  Crystal Ball, 

@RISK and ACE all have the ability to perform the analysis by measuring the correlation between 

defined distributions and the target total.  @RISK version 6 introduced a new method that is their 

default and ACE also provides an optional alternative approach. 

This discussion will focus on the Cost Driver Uncertainty.  For consistency across tools, it is recommended 

that the rank correlation view is selected.  Cost driver distributions that correlate most with the target are 

deemed to be the most important.  But take care to look for distributions that have nothing to do with the 

target appearing on the chart if they happen to be highly correlated with distributions that are important.  

Crystal Ball and @RISK will alert the user when correlated distributions are displayed on the report 

rendering the results potentially misleading (see footnote on the left chart in Figure 4-6).  A workaround is 

to run the analysis with applied correlation disabled to see if the results change. 

 

Figure 4-6  CB Sensitivity Result with Correlation Enabled and Disabled 

Indeed the results are quite different when applied correlation is disabled.  For instance, the correlation of 

Airframe_UC1 to the EMD uncertainty changes from 0.39 to less than 0.03 since it does not appear on the 

correlation disabled chart.  Also, note that the scale on the horizontal axis changed, a consideration when 

comparing charts like this, especially if the tool does not permit the user to correct the x-axis scale. 

ACE provides an option to engage a method (see Reference 40) that will account for applied correlation.  

Figure 4-7 illustrates that impact on the Sensitivity analysis. 
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Figure 4-7  ACE Sensitivity with Correlation Ignored and Correlation Accounted for 

@RISK 6.0 introduces another method for finding those distributions that have the most impact on a 

particular element.  The process is summarized as follows: 

 Collect the trial data for the target element and all of the related distributions defined in the model 

o Distributions associated with cells that do not link (via the model’s formulas) to the target cell are 

removed from the Sensitivity analysis to avoid spurious results (this feature can be disabled if 

necessary). 

 Sort the trial data by the first variable and divide into bins 

 Calculate the statistic of interest (such as the mean or a percentile) for each of the bins 

 The highest and lowest value calculated for any bin is stored and compared to the results of the same 

process for every other distribution considered in the analysis 

The user is permitted to change the number of bins used to perform the analysis.  Doing so will change the 

results considerably and, the smaller the trial-to-bin ratio, the more unstable the results.  If this method is to 

be used, agencies are highly encouraged to promote use of a consistent number of trials and bins, for instance 

10,000 trials and 10 bins.  However, 1,000 trials per bin may still yield unstable results.  Consulting a 

convergence test result (Section 3.4.3) may help with determining the number of trials per bin that are 

required for stable results. 

The sensitivity report remains somewhat controversial because there are so many variations and each have 

their own particular shortcomings.  Typically, however, most analysts continue to use whatever the tool 

default happens to be.  As of this writing, Crystal Ball uses correlation to identify uncertainty drivers and 

reports when applied correlation is encountered by adding a warning note to the chart (see Figure 4-6); ACE 

uses correlation but includes a method to adjust for applied correlation; and @RISK 6.0 has a completely 

different approach.  If analysts are going to use tool sensitivity reports as the basis for identifying drivers that 

have the most influence on total uncertainty, it is imperative that they understand the method the tool is using 

including any shortfalls and build speaking points accordingly. 

Technical Review Charts: 

Use multiple methods (Pareto, Tornado, Sensitivity, etc.) to identify cost, duration and uncertainty drivers.  

This is not an all-encompassing list of useful charts. 
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4.2 REPORTING TO DECISION MAKERS 

Reporting to senior leadership does not typically require the type of detailed charts shown to colleagues or 

technical management.  Presenting the risk story to senior leadership or to a review agency requires 

presentation of the S-curve as shown in Figure 4-8.  A utility to generate this figure is available with this 

handbook.  See Section 7.1.6 for details.  

In the upper left is the S-curve with markers for individual points of interest such as the mean, the 80% or a 

particular scenario.  Agencies may choose other estimates to include on the S-curve such as budgets, CAPE 

estimates, and high and low scenarios.  If doing so, be aware that outside estimates placed onto your curve 

will likely convey a different probability level than that of the estimate’s proponent.  To the right of that is a 

decile table showing each 10% increment of probability and its corresponding value.  Markers may be 

optionally used to show other estimates on the decile chart.  Directly below the S-curve is the CV to convey 

the estimate’s dispersion.  At the bottom right is a list of the major drivers of risk in the model.  Optionally, 

parameters for the low and high scenario may be shown.  This is to give context to the overall curve in words 

and parameters that the decision maker can understand.  This chart must be repeated for each phase or 

appropriation on which uncertainty analysis was performed.  For an on-going program this S-curve is the to-

go cost, but the sunk cost needs to be shown on the chart.  Optionally, a second S-curve containing both sunk 

and to-go cost may be presented in which case both sunk cost and to-go costs must be clearly noted. 

Strive for a consistent x-axis range throughout a given presentation and even throughout each organization.  

It is suggested that the x-axis be centered on the mean with a range consistent with a CV of 0.3. 

 

Figure 4-8  Sample S-curve Presentation Chart  

The second necessary chart is the time-phased estimate by program phase.  This will show the TY estimate at 

the selected cumulative probability by year.  An example is shown in Figure 4-9. 
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Figure 4-9  Sample Phased Estimate by Appropriation Presentation Chart  

Note that the allocated total for EMD is slightly different than the S-curve value at 80%.  The reason for this 

is that the S-curve is developed directly from the simulation which includes influence from duration 

uncertainty.  The risk allocation approach is performed on constant year dollars, phased and then inflated to 

the TY.  As shown in Figure 4-10, the 80% TY results from the simulation and allocation differ by about 

1.6% for EMD.  Production is almost identical because we did not include duration uncertainty in 

Production.  The BY results match each other identically, except for the total.  The total should not match 

since the simulation is the statistical result, not the sum of EMD and Production, while the allocated result is 

the sum.  It may be useful to know the percentile of the current budget. 

 

Figure 4-10  Comparing Simulation and Allocated TY Results  

In addition to the S-curve and phased charts, a complete presentation of the risk analysis must contain the 

following items: 

 The contents of the point estimate 

 General approach of how the uncertainty was defined and, in the case of the simulation method, how 

the bounds and distributions were chosen 

 Identify the most important contributors to the cost estimate uncertainty and any risk mitigation 

initiatives captured by the estimate 

 Identify the cost drivers that have the most impact on the cost estimate 

 The key point is to list those topics that have meaning to the decision maker 

 

Presenting the risk story to leadership: 

Time-phased TY estimate by appropriation  

S-curve summary for each program phase. 

S-curves should report CV, mean, and other points of interest.  

S-curve x-axis range should be conditioned on a CV when comparing two or more S-curves.  

Technical review charts should be in backup to support a brief explanation of the drivers to decision makers. 

 

 

 

  

BY Results TY Results

Simulation 

Result

Allocation 

Result

Simulation 

Result

Allocation 

Result

Missile System $376,127 $381,908 $421,719 $421,268

    Engineering and Manufacturing Development $163,168 $163,168 $174,934 $172,072

    Production & Deployment $218,740 $218,740 $253,240 $253,022

80%

Simulation and Allocated Results
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5.0 ALTERNATIVES TO THE CISM APPROACH 

5.1 OVERVIEW 

Although this handbook focuses on how to build a detailed model there are acceptable alternatives including 

outputs-based, scenario-based or method of moments.  Considerations in choosing one of these approaches 

over CISM include: available data, available resources, available schedule, the complexity of the estimate, 

and the consequences of “less precise results.”  These methods are meant to complement rather than replace 

CISM.  Each method has its strengths and weakness.  A best practice is to employ more than one technique 

and to compare results.  If the aggregate results of the alternative procedures are far apart, further work is 

required to determine why. 

This handbook recommends CISM for conducting cost risk and uncertainty analysis and, if time and 

resources permit, a FICSM model.  A sound rationale is required if something other than CISM is chosen as 

the primary method. 

5.2 ENHANCED SCENARIO-BASED METHOD 

5.2.1 Overview 

The Scenario-Based Method (SBM), published in 2008 (Reference 66), offered a simpler analytical 

alternative to advanced statistical methods or simulation for generating measures of cost risk.  Since 2008, 

enhancements to SBM were made that included integrating historical cost performance data into its cost risk 

analysis algorithms and providing a perspective on its use in terms of the 2009 Weapon Systems Acquisition 

Reform Act. Together, these improvements define the enhanced scenario-based method (eSBM), which was 

published in 2012 (Reference 86
10

). 

An objective of an eSBM is to assess the impact of various scenarios against a program baseline.  

Consequently, the baseline scenario is often based on the Cost Analysis Requirements Description (CARD) 

parameters.  Rather than building up risk and uncertainty element by element as in Monte Carlo simulation, 

eSBM instead shifts attention to the identification and quantification of what can go right and what can go 

wrong with an acquisition program from a high-level management point of view.  CISM and eSBM both 

yield S-curves.  Yet, the two techniques are fundamentally different in approach, CISM applies risk and 

uncertainty at low levels in the program cost element structure while eSBM is more of a top-down approach.  

Proponents of eSBM believe that it can ease the mathematical burden on analysts, focusing instead on 

defining and analyzing risk scenarios as the basis for deliberations on the amount of cost reserve needed to 

protect a program from unwanted or unexpected cost increases.  The development of eSBM scenarios, 

executed in conjunction with the requirements, acquisition, engineering, and resourcing communities, 

promotes a complete, understandable, and integrated view of cost risk and savings opportunities. 

5.2.2 Application of the eSBM 

Detailed eSBM steps and a worked numerical example can be found in Appendix A.13.  The NCCA S-curve 

tool (available for download from www.ncca.navy.mil/tools/tools.cfm) can be used as an alternative to the 

mathematics described in Appendix A.13 to develop a total cost distribution,.  The S-curve Tool allows 

practitioners to: 

 Enter data to create up to two S-curves 

 Use historical CVs and cost growth factors (CGFs) to generate S-curves 

 Plot alternative point estimates on an S-curve 

                                                 
10

 Authors grant permission to liberally quote from their referenced work for this section/appendix without detailed citations. 

http://www.ncca.navy.mil/tools/tools.cfm
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Figure 5-1 outlines the S-curve tool process flow.  A user’s guide and complete details are available on the 

web site.  For the CSRUH example model, one could select parametric, lognormal, specify the PE cost is in 

TY, the PE probability, and the CV.  The tool will generate the S-curve and plot additional points, if so 

desired. The tool allows comparisons of the example model S-curve to historical S-curves for the commodity 

of interest. 

 

Figure 5-1  NCCA’s S-curve Tool Process Flow  

5.2.3 eSBM Example Application 

An essential step in the eSBM process is to conduct a thorough review of major elements of risk.  Elements 

of risk are identified and scoped based on: 

 A general knowledge of defense acquisition programs and the discipline of defense cost analysis 

 Site visits to the facilities of the prime contractor 

 Extensive discussions with the program office 

 Repeated interface with other major stakeholders including the Service and Joint-Staff requirements’ 

community, budget analysts, Service and OSD acquisition officials, and the logistics community 

The missile example model WBS and point estimate are the basis of the eSBM example.  eSBM begins with 

a vigorous discussion among stakeholders to identify and analyze various scenarios.  For example, expert 

stakeholders may determine that the research that led to Figure 5-2 makes it a reasonable reference from 

which a low and high bound for software person months could be estimated.  However, eSBM typically 

continues with an in-depth investigation into the nature and underlying causes of potential code growth.  

Results of the investigation can serve as a risk mitigation strategy for the program office. 

Empirical
(i.e., a set of outcomes from a 

Monte Carlo risk run

Parametric
(i.e., enhanced Scenario-Based Method (eSBM) 

or parameters from external risk analysis)

Point Estimate
(i.e., risk analysis not yet 

done)

Input # of Trials

Select Cost Units for Data

Input Values for Trials

Optional Feature:
Assess empirical data by 

overlaying parametric curve

Normal Lognormal

(1) Mean
(2) CV
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(2) Specified Cost (Xp)
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Mean Median(1) CV
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Are the data Empirical, Parametric, or a Point Estimate?

Normal Lognormal

Estimate

Types of Distributions

Types of Parameters Type of Input

For eSBM,
Xp = XPE & p = αPE

(1) Commodity
(2) Life-cycle phase
(3) Milestone
(4) Inflation
(5) Quantity

(1) Apply CV only
(2) Apply CGF only
(3) Apply CV and CGF

S-Curve

S-Curve

Historical adjustment inputs:
Select how historical 
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Historically adjusted 
S-curve is generated

Would you 
like to apply historical 

adjustments to the 
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S-Curve is generated; optional: overlay PDF
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Figure 5-2  eSBM Example Software Development Uncertainty 

Ideally, the expert stakeholders will identify data-driven methods to develop ranges on the key cost drivers 

they have identified in the model.  This is one of the great benefits of the eSBM method, developing a deep 

understanding of the program’s uncertainties through a detailed and systematic assessment of the program 

elements.  The result of such discussions should lead to a summary of values that can be used to create 

different scenarios as illustrated in Table 5-1. 

Table 5-1  eSBM Example Model Scenarios 

 

It is necessary in eSBM to anchor the point estimate to a point on a the selected distribution.  A wide variety 

of choices are available including the use of historical cost growth data to estimate the point estimate 

position.  The point estimate, in any event, should be developed with its corresponding value on the S-curve 

in mind.  For the missile example, the unadjusted baseline cost estimate of $277M (TY$) is regarded as 

falling at the 30th percentile on the S-curve based on expert opinion regarding estimates of this type.  The 

last piece of the puzzle is to estimate the CV from historical data.  Ideally, data related to the program can be 

found and analyzed to estimate the CV.  Alternatively, Table 3-4 or Figure 5-3 (see Reference 88) can be 

used to estimate the CV for the missile production cost. 
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Figure 5-3  Estimated CVs By Milestone for Navy Major Programs 

In the missile example, a CV of 40% is chosen, which is the midpoint CV value at MS B for Navy programs 

(Figure 5-3).  In this case, the 40% CV is a value based on acquisition outcomes expressed in Then-Year 

dollars but adjusted for changes in quantity.  By using TY dollars, it captures, to some degree, the variability 

of the rate of inflation over time.  Quantity changes, in many cases, are best handled as what-if excursions 

with their own S-curves.  Table 5-2 shows the calculations to convert the PE, CV, and PE probability to unit 

space mean and standard deviation to model a lognormal distribution. 

Table 5-2  eSBM Example Calculations    

 

The calculations in Table 5-2 completely define the S-curve.  Figure 5-4 illustrates the results with the 

baseline PE and the scenarios also plotted. 
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Figure 5-4  Example eSBM Result 

5.3 METHOD OF MOMENTS (COST UNCERTAINTY) 

An analytical method to estimate total uncertainty in a cost estimate is called the “method of moments
11

”.  

The method of moments in the context of cost uncertainty analysis is the estimation of a total-level mean and 

variance from the sum of the subordinate elements.  The mean and variance are the first and second moment 

of a random variable, hence the name method of moments.  With knowledge of the mean and standard 

deviation for each element and how they are correlated, the mean and standard deviation at the parent levels 

can be calculated without the need for simulation.   

In Section 3.3.3 the method of moments is used to analytically calculate the total mean and standard 

deviation from the sum of five different correlated distributions.  What is not known is the distribution shape 

at the parent level.  However, a reasonable approach is to assume a lognormal distribution in order to 

estimate values at specific probabilities.  Method of moments is a convenient approach when the model is a 

simple sum of uncertain elements, particularly if there are a large number of them.  However, there are 

several complications, including: 

 the variance sum must be adjusted for correlation  

 distributions at the parent levels are assumed rather than derived  

 efforts to combine uncertainties (such as the uncertainty of the cost driver and the CER) can lead to 

complex calculations   

 simulation tools come with an abundant supply of ready to use charts and tables to analyze and report 

results.  Those building custom method of moments models need to also develop the necessary charts 

and tables. 

While, the method of moments is not recommended for general use, it has been found to be a simple, 

accurate alternative by some expert analysts.  Method of moments has been implemented in the NASA/Air 

Force Cost Model and in Missile Defense Agency cost models.  Most analysts, however, will find it 

challenging to develop custom method of moments models for every estimate.  The use of simulation tools 

enables an analyst who is not an expert in the mathematics of method of moments to develop sophisticated, 

                                                 
11

 Method of Moments (Statistics) and Method of Moments (Probability) are examples of two other uses of the term. 
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credible uncertainty analyses.  But if the model is simple, particularly when summing a very large number of 

correlated throughputs, the method of moments can be an effective approach.  For more information on the 

method of methods, see Reference 11. 

5.4 OUTPUTS-BASED SIMULATION METHOD 

5.4.1 Outputs Modeling Based on Historical Data References 

The outputs-based method applies uncertainty directly to the results (cost model outputs) rather than to the 

model’s inputs.  The analyst selects uncertainty distributions for the WBS element outputs to address the 

combined uncertainty of the cost method and the cost method inputs.  Figure 5-5 shows the point estimate 

results for the EMD phase of the example model.  To illustrate the mechanics of preparing an outputs-based 

simulation, the uncertainty defined in Figure 5-5 is drawn from either CRUAMM (Reference 80 and 

Attachment 1) or Table 2-9 as noted.  Further, these elements have 0.3 correlation applied as depicted in 

Figure 5-6.  

 

Figure 5-5  Outputs-Based Uncertainty 

  

Figure 5-6  Outputs-Based Correlation Matrix 

5.4.2 Outputs Model Based on Risk Scoring 

Risk scoring methods estimates the uncertainty of a top level WBS cost element (e.g., Development, 

Production, etc) through a process that maps an uncertainty distribution to a risk assessment ordinal score.  

The first step is to develop one or more tables to define the level of risk for a variety of project 

characteristics.  These tables range from simple scores of low, medium, or high to complex scoring matrices 

with several levels of granularity for multiple categories.  Table 5-3 and Table 5-4 (from Reference 68) 

present two example Risk Scoring Matrices used in a methodology developed by the Intelligence 

Community Cost Analysis Improvement Group (IC CAIG) and the Missile Defense Agency (MDA).  In this 

particular application the risk assessment scores run from 0 to 10. The next step is to use historical data to 
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develop a way to establish a growth factor and its uncertainty from projects with similar scores.  For an 

estimated program, the risk assessment is performed in collaboration with the technical personnel who are 

familiar with the development and the production phases of the subject program.  For more detail on this 

approach, including sample tables and distribution mapping, please see Reference 33 and 68. 

Table 5-3  Hardware Risk Scoring Matrix 

 

Table 5-4  Software Risk Scoring Matrix 
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6.0 PORTFOLIO LEVEL CONSIDERATIONS  

This section of the handbook explores the impact of project probability selection in a portfolio of projects 

situation.  Please see Reference 30 for further information. 

The simplest way to generate the uncertainty distribution at the portfolio level is to model each project using 

their median and 85% result to define a lognormal distribution (see Section 2.4.4), a fitted distribution (see 

Section 2.4.3) or an empirical distribution (see Section 2.4.3.6).  It is then necessary to assign correlation 

between the projects.  In the absence of any other rationale, assigning the default 0.3 is appropriate. 

Table 6-1 defines the uncertainty distributions for eight example programs in a portfolio.  In this example, 

each project’s point estimate represents very different probabilities.  The first four are at the median; the last 

four are at the 25% probability (consistent with a right skew triangular distribution see Section 2.5.5).  The 

point estimate is not the proposed budget, simply a selected point on each distribution that best fits the source 

model distribution.  With these very different distribution shapes and dispersion, the following explores the 

effects of correlation on various percentile results at the parent level.  

Table 6-1  Distributions Fitted to Project Uncertainty 

  

Table 6-2 illustrates the difference between the simulation result and the sum of the projects when they are 

budgeted to a specific probability (each block is a different project probability scenario).  Additionally, each 

column identifies the correlation applied across all the projects. 

Table 6-2  Portfolio Total Results at Various Project Probabilities 

  

WBS/CES
Point 

Estimate
Distribution

Point 

Estimate 

Position

CV Low % High %
Low 

Percentile

High 

Percentile

Portfolio Total

    Lognormal High 100 LogNormal Median 0.35

    Lognormal Low 100 LogNormal Median 0.15

    Normal High 100 Normal Mean 0.35

    Normal Low 100 Normal Mean 0.15

    Triangular High RIght 100 Triangular Mode 90.3 171.1 15 85

    Triangular Low RIght 100 Triangular Mode 95.9 130.5 15 85

    BetaPert High RIght 100 BetaPert Mode 90.3 171.1 15 85

    BetaPert Low Right 100 BetaPert Mode 95.9 130.5 15 85

Correlation of Projects: 0.00 0.30 0.50 0.90

Probability Level 30% 30% 30% 30%

Portfolio Total at Selected Probability Level $846 $835 $820 $775

Sum of Projects at Selected Probability Level $762 $762 $762 $762

Probability of Sum of Projects 5% 9% 15% 27%

Probability Level 50% 50% 50% 50%

Portfolio Total at Selected Probability Level $887 $886 $883 $871

Sum of Projects at Selected Probability Level $866 $866 $866 $866

Probability of Sum of Projects 40% 42% 44% 49%

Probability Level 60% 60% 60% 60%

Portfolio Total at Selected Probability Level $908 $911 $915 $922

Sum of Projects at Selected Probability Level $923 $923 $923 $923

Probability of Sum of Projects 67% 64% 62% 60%

Probability Level 70% 70% 70% 70%

Portfolio Total at Selected Probability Level $930 $939 $951 $978

Sum of Projects at Selected Probability Level $987 $987 $987 $987

Probability of Sum of Projects 89% 84% 78% 71%

Probability Level 90% 90% 90% 90%

Portfolio Total at Selected Probability Level $994 $1,019 $1,051 $1,148

Sum of Projects at Selected Probability Level $1,176 $1,176 $1,176 $1,176

Probability of Sum of Projects 100% 100% 98% 92%
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This example assumes that the dollars saved from one project can be moved to another.  Put another way, the 

PA dollars are managed at the portfolio level.  There are several key observations from this example: 

 Budgeting all projects at 50% leads to a portfolio budget that has a probability of less than 50%, even 

at very high correlation between projects 

 Budgeting all projects at 70% provides a much higher probability of success at low correlation levels 

(which is likely realistic) 

 Budgeting all projects at 60% leads to a portfolio probability near 60% at all levels of correlation.  

This is because 60% tends to be close to the mean of most project simulation results (the CISM 

model is near 57%).  Since means sum, the sum of percentiles close to the mean will approximate the 

parent mean. 

 If all projects are budgeted less than the mean, the total at the portfolio level will be at a lower 

probability than the projects.  The opposite is true if projects are budgeted above the mean. 

The 60% values will not be much higher than the mean values for most projects.  Setting 60% as a budgeting 

goal treats each project the same.  Budgeting to the mean results in projects having different probabilities 

(albeit not very different). 

Budgeting all projects to the same probability treats each project the same. 

Budgeting all projects to their respective means sets them to different probabilities. 
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7.0 CSRUH UTILITIES AND SUPPORT FILES 

Several Excel based utilities and support files were delivered with the CSRUH and should be available from 

the same location as the handbook.  The files were developed and tested in the following applications: 

 Microsoft Office Professional Plus 2010 (14.0.7109.5000) 

 Oracle Crystal Ball Fusion Edition Release 11.1.2.2.000 (32-bit) Build 11.1.2926.0 14 March 2012 

 Palisade Corporation @RISK for Excel Version 6.0.0 Professional Edition 2012  

 Automated Cost Estimating Integrated Tools (ACEIT) 7.3a Build #54 12 March 2012 

7.1 CSRUH UTILITIES 

Six CSRUH Excel utilities were developed to address key uncertainty analysis and reporting processes and 

were used to create many of the figures and tables in this handbook.  They are listed in the order that they 

appear in the handbook.  The order of appearance should not be interpreted as order of importance. 

7.1.1 CSRUH Best Fit Utilities 

The CSRUH_U1a_CrystalBallBestFitUtility.xlsm utility can be used to compare several distribution fits to 

sample data.  See Section 2.4.3 for details on the distribution fitting process and guidance on how to interpret 

results.  Crystal Ball must be installed to use this utility.  The CSRUH_U1b_CRUAMMBestFitUtility.xlsm 

is a more sophisticated alternative that does not require Crystal Ball.  It operates within Excel using Solver or 

optionally using ACEIT’s CO$TAT application. 

7.1.2 CSRUH Adjust for Skew Utility 

The CSRUH_U2_AdjustForSkew.xlsx utility can be used to calculate the minimum and maximum of a 

triangular, uniform and betaPERT distribution based upon SME inputs.  For details, see Section 2.5.4. 

7.1.3 CSRUH Correlation Utility 

The CSRUH_U3_CorrelationUtility.xlsx is a tool-independent utility that can be used to measure the 

Pearson Product Moment correlation developed in the simulation.  For details see Section 3.3.4. 

7.1.4 CSRUH Convergence Utility 

The CSRUH_U4_ConvergenceUtility.xlsx provides a tool-independent method to determine the number of 

trials required to achieve a stable result.  Many tools offer alternatives.  For details see Section 3.4.3.  If 

convergence is not achieved with the 10k version, a 20k version is also available. Due to the size of these 

files, it is recommended that all other Excel files should be closed if possible. 

7.1.5 CSRUH Scatter Plot Utility 

The CSRUH_U5_ScatterPlotUtility.xlsx is a tool-independent utility that can be used to plot any two random 

variables from the uncertainty model.  Each dot on the plot represents one trial result.  Typical plots are cost 

(y-axis) vs. duration (x-axis).  For an example, see Section 4.1.2.  Cost vs. cost (e.g., production cost vs 

development cost) or cost vs. driver (e.g., cost vs. weight) are examples of other useful scatter plots. 

7.1.6 CSRUH S-curve Utility 

The CSRUH_U6_SCurveUtility.xlsm (this utility includes macros) is a tool-independent utility that can be 

used to construct the S-curve including various data points plotted on the curve.  The utility features a 

method by which the x-axis range can be conditioned to a specific CV rather than let Excel auto fit the range.  

For an example, see Section 4.2. 
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7.2 CSRUH SUPPORT FILES 

Thirteen CSRUH support files were developed to build the figures and tables in this handbook not addressed 

by the utilities.  They are listed in the order that they appear in the handbook.  The order of appearance 

should not be interpreted as order of importance. 

7.2.1 CSRUH Illustration Files 

The following files contain the bulk of the illustrations in the CSRUH: 

 CSRUH 1 Illustrations.xlsx: The first sheet in this workbook contains an index of all the 

illustrations in the CSRUH and where they can be found amongst the utility and support files.  

Additionally, this file can be referenced to review the mathematics associated with the figures and 

tables in the CSRUH. 

 CSRUH 1 Illustrations.pptx: This PowerPoint presentation contains many of the illustrations in the 

CSRUH 

7.2.2 CSRUH Example Model Files 

The example model used to generate most of the figures and tables in the main body of the CSRUH was 

developed in three separate tools to demonstrate the CSRUH guidance is tool independent.  The following 

files are available: 

 CSRUH 2 Missile CB Model.xlsm:  This file contains the Crystal Ball example model.  It also 

contains a chart that can be used to review how all three tools compare for each WBS element (see 

Figure 3-9).  Additionally, the sample calculation for all three allocation methods (see Section 3.6 

and A.12) is contained in this file.  Two other CB models (2a and 2b) are provided to demonstrate 

how to address sunk costs (see Section 2.8.2) and outputs based modeling (see Section 5.4.1). 

 CSRUH 3 Missile @RISK Model.xlsm: This file contains the @RISK example model.  There is 

also a “swap out” version of this file (2a) that can be read by users without @RISK on their 

machines. 

 CSRUH 4 Missile Model ACEIT_73a.ACEIT: This file contains the ACEIT example model 

 CSRUH 5 Missile CER Data.xlsx:  This file contains the source data, regression analysis and 

distribution fitting analysis used to support the CSRUH example model and associated figures and 

tables. 

 FICSM Model files:  There are four files to support the FICSM (see Appendix B ) discussion.  Two 

are associated with Microsoft Project (MSP) 2007 and two are associated with MSP 2010. 
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APPENDIX A  TERMINOLOGY AND DETAIL 

This appendix presents definitions for technical terms used throughout this handbook and some additional 

detail on specific concepts and process.  Many publications contain definitions of each of these terms and 

processes, often in conflict with one another. Therefore, this appendix elaborates on many of these concepts 

mathematically and graphically to clarify their use in this handbook. 

A.1 DEFINITIONS 

A.1.1 Deterministic 

Deterministic refers to events that have no random or probabilistic aspects but proceed in a predictable 

fashion. A deterministic model consists of an exact relationship; for example, if the labor rate (LabRate$) is 

known and the man-hours (Mhrs) are known, then the cost is known by calculating LabRate$*Mhrs.  Unlike 

a stochastic model, a deterministic equation has no random error. 

A.1.2 Stochastic 

Stochastic refers to patterns or processes resulting from random variables. Unlike a deterministic model, the 

equations and/or their parameters are not known with certainty but only with some amount of probability.  

For example, the labor rate and the man-hours are only known within some degree of probability and 

therefore the cost calculated by LabRate$*Mhrs is only known within a probability distribution defined by 

the combined input uncertainty.  In other situations, there could be random errors associated with the 

equation, too.  A  parametric cost estimating method is an example of a method where uncertainty of the 

equation and its inputs must be combined to arrive at the total uncertainty for the element in question.  

A.1.3 Coefficient of Variation (CV) 

CV is the standard deviation divided by the mean.  The result is a unitless measure of the distribution 

dispersion.  

A.1.4 Confidence Interval and Confidence Level 

A confidence interval is an interval estimate for an unknown population parameter in a probability 

distribution. A confidence interval is used to indicate the reliability of a point estimate—the tighter the 

interval, the more reliable the point estimate is at a given confidence level.  For example, when estimating 

the mean of a normal distribution, the sample mean is a point estimate of (or best guess) for the value of the 

mean.  However, this estimate is almost surely not equal to the population mean.  A confidence interval 

identifies a range around the estimate for the population mean.  The width of that range is a function of the 

confidence level.  The confidence level associated with the interval (e.g., 80%, 90%, or 95%) is the 

proportion of times in which the interval will contain the true value of the unknown parameter. 

A.1.5 Cost Contributors and Cost Drivers 

When asked to identify the cost drivers in a cost estimate, those asking the question may define cost driver 

different than the person answering the question.  For some, the project cost drivers are the WBS elements 

(generally at a lower level) that have the highest cost.  For others, project cost drivers are the cost estimating 

method input variables that have the most influence on the total cost of interest.  To draw a distinction 

between these two concepts, the following terms are defined for this handbook: 

 Cost Contributors:  Child WBS elements that influence the total cost or total uncertainty of interest 

 Cost Drivers: Cost estimating method inputs that influence the total cost or total uncertainty of 

interest 
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A.1.6 Nunn-McCurdy Breach 

The following is an extract from Reference 74: 

“For more than 25 years, the Nunn-McCurdy Act (10 U.S.C. § 2433) has served as one of the principal 

mechanisms for notifying Congress of cost overruns in Major Defense Acquisition Programs (MDAPs). 

Nunn-McCurdy establishes different thresholds to determine if a  MDAP or designated major subprogram of 

a MDAP experiences a cost overrun (for purposes of this report, the term program will refer to MDAPs as 

well as designated major subprograms).  These thresholds are based on a comparison between a program’s 

actual costs and the current baseline estimate or the original baseline estimate (defined below). A program 

that has cost growth that exceeds any of these thresholds is said to have a Nunn-McCurdy breach and must 

notify Congress of the breach. 

There are two categories of breaches: significant breaches and critical breaches. As shown in Table A-1, a 

“significant” Nunn-McCurdy breach occurs when the Program Acquisition Unit Cost (PAUC- defined as the 

total cost of development, procurement, and construction divided by the number of units) or the Procurement 

Unit Cost (PUC- defined as the total procurement cost divided by the number of units to be procured) 

increases 15% or more over the current baseline estimate or 30% or more over the original baseline estimate. 

A “critical” breach occurs when the PAUC or PUC increases 25% or more over the current baseline estimate 

or 50% or more over the original baseline estimate. 

Table A-1  Nunn-McCurdy Breach Thresholds 

 

According to Title X of the U.S. Code, the Department of Defense (DOD) is required to establish a baseline 

description of all major defense acquisition programs when the program is officially started. This baseline 

description includes information on the program’s planned cost, schedule, and performance.  The cost 

information is referred to as the “baseline estimate”. The baseline description (including the cost estimate) is 

contained in the Acquisition Program Baseline (APB). 

APBs are required to initiate a program, and can only be revised: 

 at the milestone reviews or when full rate production begins 

 if there is a major program restructuring that is fully funded, or  

 as a result of a program breach if the breach is primarily the result of external causes beyond the 

control of the program manager  

Under current DoD policy, current APBs cannot be revised just to avoid a Nunn-McCurdy breach.  An 

original baseline estimate is the cost estimate included in the original (first) APB that is prepared prior to the 

program entering “engineering and manufacturing development” (also known as “Milestone B”), or at 

program initiation, whichever occurs later.  An original baseline estimate can only be revised if the program 

has a critical Nunn-McCurdy breach (see Table A-1). 

A current baseline estimate is the baseline estimate that is included in the most recently revised APB. If the 

original baseline estimate has not been revised, the original baseline estimate is also the current baseline 

estimate.”  

Reference 59 defines Major Automated Information System (MAIS) and provides an overview of 

congressional reporting requirements.  Senior officials must review the MAIS Program Manager’s quarterly 
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reports to determine whether a significant or critical change has occurred.  A significant change is when any 

of the following has occurred: 

 Schedule:  a delay of more than six months but less than a year in any program schedule milestone or 

significant event from the initial baseline  

 Cost:  estimated program development cost or full life-cycle cost for the program has increased by at 

least 15 percent, but less than 25 percent, over the original estimate  

 Performance:  a significant, adverse change in the expected performance of the major automated 

information system to be acquired 

A critical change to a MAIS program has occurred if: 

 Time certain development:  failure to achieve IOC within five years of milestone A approval  

 Schedule:  a delay of one year or more in any program schedule milestone or significant event from 

the original baseline  

 Cost:  the estimated program development cost or full life-cycle cost for the program has increased 

by 25 percent or more over the original baseline  

 Performance:  a change in expected performance that will undermine the ability of the system to 

perform the functions anticipated in the original baseline 

To put the cost values into perspective, Figure A-1 illustrates them plotted against lognormal cumulative 

probability curves (S-curves).  The labels identify the probability the program will come in at or below these 

values.  For instance, if the program’s baseline S-curve has a 0.10 CV, there is almost no chance for a 

significant or critical breach.  Even when the CV is 0.3, the implication is that there is only a 6% chance of a 

critical breach.  While comforting, these results are not consistent with history.  Many projects have suffered 

a breach.  Figure A-1 suggests that CVs less than 0.15 at Milestone B may be too optimistic.  For further 

discussion on how excessive optimism and unrealistic cost estimates have been blamed for various breaches, 

please read Reference 74. 

 

Figure A-1  Nunn-McCurdy Breach Values on Lognormal S-curves 
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A.1.7 Acquisition Program Baseline Deviation 

The contents of this section are taken from Reference 102.  Further direction can be found in 10 U.S.C. 

2435, 10 US.S.C. 2445c and DoD 5000.01. 

Milestone B is normally the formal initiation of an acquisition program with the Milestone Decision 

Authority (MDA) approval of the Acquisition Program Baseline (APB).  An APB is required beginning at 

EMD or program initiation, whichever occurs later (see Table 3 of Reference 102).  The APB is the 

agreement between the MDA and the Program Manager and his or her acquisition chain of command that 

will be used for tracking and reporting for the life of the program or program increment.  Deviations from the 

approved APB will be immediately reported to the MDA.  Deviations have specified default thresholds for 

schedule and cost of: 

1. Objective schedule value plus 6 months 

2. Objective cost value plus ten percent 

Within 30 days of an APB deviation, the PM has to inform MDA for the reason for deviation, and within 90 

days a proposed revised APB shall be submitted or Component-level review shall be held to review the 

program.  An APB deviation is more common than a Nunn-McCurdy breach since they have lower 

thresholds; however they still require a great deal of work to remedy. 

If the probability of an APB deviation is low (e.g., plotted very high on an S-curve), that is an indication the 

uncertainty in the model may be understated, since, APB deviations do happen. 

A.1.8 Risk 

Risk is the possibility of incurring loss or misfortune.  In the context of cost estimating, risk is the possibility 

the program will not be able to complete on budget.  Too often analysts will use the terms risk and 

uncertainty interchangeably.  In this handbook, “risk” is derived from an “uncertainty” analysis.  Having 

developed the uncertainty distribution for the project total cost and duration, the analyst can estimate the risk 

in terms of probability of the completed project exceeding a specified budget and/or schedule. Opportunity, 

on the other hand, is the possibility of a favorable outcome.  In the context of cost estimating, opportunity is 

typically an item of discrete uncertainty that results in a cost avoidance.  

A.1.9 Standard Error 

The standard error is a common terminology for the standard deviation of a sample that is used to estimate 

the population standard deviation.  Two types of standard errors commonly found in cost analysis include: 

 Standard error of the mean: is the estimated standard deviation of the sample mean.  The standard 

error of the mean can be used to build a confidence interval for the mean.  This confidence level 

defines the range about the sample mean that the true mean can be found within a specific 

probability. 

 Standard error of estimate (SEE): is an estimate of the standard deviation about the regression line.  

It measures the amount of dispersion of the CER errors (or it provides one-sigma spread of the CER 

errors).  It provides a measure of “average” distance of the sample data from the regression equation.  

To be used in an uncertainty analysis, the SEE should be converted to a prediction interval to account 

for sample size, degrees of freedom and the distance of the estimate from the center of the CER 

dataset.  Many papers, texts and tools use Standard Error (SE) rather than SEE to describe the CER 

error.  SEE and SE are used interchangeably in this handbook.  For multiplicative error CERs it is 

often called the standard percent error (SPE). 
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A.1.10 Integrated Master Plan (IMP) and Schedule (IMS) 

The IMP defines a hierarchy of program events, in which each event is supported by specific 

accomplishments, and each accomplishment is based on satisfying specific criteria to be considered 

complete. The IMS is an integrated, networked schedule containing all the detailed discrete work packages 

and planning packages (or lower-level tasks of activities) necessary to support the events, accomplishments, 

and criteria of the IMP. 

The IMP and IMS are business tools to manage and provide oversight of acquisition, modification, and 

sustainment programs. They provide a systematic approach to program planning, scheduling, and execution. 

They are equally applicable to competitive and sole source procurements with industry, as well as to 

government-only, in-house efforts. They help develop and support program/project budgeting, and can be 

used to perform "what-if" exercises and to identify and assess candidate problem workarounds. Finally, use 

of the IMP/IMS focuses and strengthens the interaction between the government and contractor teams with 

respect to program execution. 

The IMP should provide sufficient definition to track the step-by-step completion of the required 

accomplishments for each event, and to demonstrate satisfaction of the completion criteria for each 

accomplishment. Events in the IMP are not tied to calendar dates; they are tied to the accomplishment of a 

task or work package as evidenced by the satisfaction of the specified criteria for that accomplishment. The 

IMS should be defined to the level of detail necessary for day-to-day execution of the program. 

To build a reasonable IMP and IMS, you need to estimate the attributes of work products and tasks, 

determine the resources needed, estimate a schedule, and identify and analyze program risks. 

Accomplishments in the IMP should have criteria for determining completion with clear evidence so that the 

entire program team can understand the progress.  

The IMS and IMP should be traceable to the work breakdown structure (WBS), and be linked to the 

statement of work and ultimately to the earned value management system (EVMS). The WBS specifies the 

breakout of work tasks on which the IMP and IMS should be built on and on which the EVMS should report 

on. A good WBS includes key work efforts partitioned into discrete elements that result in a product (i.e., 

document, software item, test completion, integrated product) or in measurable progress (percent complete is 

not recommended when the end state is not completely quantifiable—an issue in software development, test 

procedures, or training materials). With a good WBS foundation, both the IMP and IMS can be more useful 

tools; with the IMP integrating all work efforts into a defined program plan, and the IMS summarizing the 

detailed schedule for performing those work efforts. The IMP is placed on contract and becomes the baseline 

execution plan for the program/project. Although fairly detailed, the IMP is a relatively top-level document 

compared to the IMS. The IMP has several levels of detail. 

 Level 1 of the IMP is Program Events (PE).  These are the major milestones and activities that occur 

on a program.  Generally, there should not be more than about 10 - 20 PEs on a program. 

 Level 2 of the IMP is Significant Accomplishments (SA).  These are the major items a project must 

accomplish to meet the PE. 

 Level 3 of the IMP is Accomplishment Criteria (AC).  These are the more-detailed items or checklists 

of how a project meets its SAs. 

 Level 4 of the IMP is generally the detailed tasks of each SA.  These details are what will become the 

IMS tasks. 

For further detail, see Reference 47. 
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A.2 POINT ESTIMATE 

A.2.1 Why a Point Estimate is Uncertain 

Unless each child of the cost estimate is known with certainty, the point estimate represents only one of 

many possible outcomes. A decision-maker who must decide on the "official" budget should make that 

decision in the context of the point estimate with respect to all other outcomes. That is the central point of 

risk and uncertainty analysis -- quantifying the possible outcomes and their likelihood so that an informed 

choice can be made. Recognizing that there is more than one outcome raises two interesting questions. One, 

what causes there to be more than one outcome and, two, if there is more than one outcome, which one does 

the aggregated point estimate represent? 

The answer to the first question is simply that estimating techniques are not sufficiently precise to capture all 

the vagaries associated with producing an estimate. To the extent historical data is used, uncertainty creeps in 

because no two programs or projects are identical: each is unique unto itself. The technology, schedule, 

contractor(s), and the budget climate all contribute to the unique character of each program and its data 

points. Moreover, even if the past is perfectly known, the future is not. Considering the educated guesses that 

an analyst must make in developing an estimate, it is no surprise that a cost estimate is just that: an estimate. 

The second question can be even more perplexing. If the point estimate is composed of several subsidiary 

estimates, what is the likelihood at the total level?  There are many possible results; here are three: 

 Consistently Symmetric Uncertainty:  If each cost element point estimate is the center of any 

symmetric distribution shape (that is, for each element, the mean, median, and mode are the same), 

the sum of the point estimates will be the center of a symmetric distribution at the total level.  

However, if even one distribution is skewed, then the sum will no longer be at the center.   

 Summing Modes: If each cost element point estimate is the mode of a skewed distribution, the sum 

of the point estimates will not sum to the mode of the total distribution 

 Summing Means, Medians, Modes or Something Else: This is the most common situation.  Even if 

the estimating method is known to return the mean of the CER, if it is being influenced by uncertain 

inputs it is unclear what the point estimate result represents. 

For cases 2 and 3 (which are the most common in cost estimates), the resulting sum is not at the 50/50 

overrun/underrun position nor is the overrun/underrun position of that sum known or easily deduced. The 

likelihood of the point estimate is unknown and the likelihood of the other outcomes is also unknown.  Risk 

and uncertainty analysis is used to estimate the likelihood of any point estimate. 

A.2.2 Content of a Point Estimate 

Typical contents of a cost point estimate include: 

 Work Breakdown Structure (WBS) to identify all the elements requiring a cost estimate 

 Technical parameters that properly define the system to be estimated 

 Rates and factors such as labor rates, head counts, fee, overhead, operating hours, or man-hour rates, 

and other programmatic cost drivers 

 A schedule that properly reflects how the project will unfold 

 An assessment of the risk register that will list events that, should they occur, will have an impact on 

the project cost and/or schedule.  The impact could be positive (opportunity) or negative (risk).  It is 

recommended that the point estimate for risk register items are zero.  For a high probability item, an 

alternative is to include the consequence in the point estimate and define a low probability risk 

register item that represents the saving (opportunity) that the item does not occur. 
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A.3 UNCERTAINTY 

A.3.1 Overview 

Uncertainty is defined as a potential deficiency in any phase or activity of the cost estimating process due to 

a lack of knowledge or due to random variations in the cost estimating process.  The analyst’s challenge is to 

adequately capture and model the complete uncertainty associated with the cost estimate.  This includes the 

impact of schedule and risk register uncertainty. 

A.3.2 Objective Uncertainty 

Objective uncertainty associated with cost model parameters is a measure of source data variability. If the 

cost estimating relationship (CER) or the input(s) to the CER are derived from statistical analysis of relevant 

historical data, the uncertainty associated with the cost estimate can often be characterized “objective,” 

meaning derived using a repeatable, proven process.  The basis for the uncertainty calculation is a function of 

how the estimate is derived.  In the sections that follow, the most common methods for deriving CERs are 

introduced with their associated “objective” uncertainty.  The uncertainty model is designed to capture and 

combine both CER and the CER input uncertainty. 

A.3.3 Distribution Boundaries for Objective Distributions 

If statistical methods have been used to generate the CER, the analyst should have the necessary information 

to replicate the uncertainty in the cost model.  Ideally, the CER statistics will provide the bounds for a 

specific confidence level.  More often than not, however, the analyst will be provided with other data such as 

the standard deviation for a specific position within the data set.  As illustrated in Figure A-2, uncertainty 

will increase (standard deviation gets larger) as the point estimate moves towards (and beyond) the data 

boundaries.  The minimum information required is the CER result and the standard deviation for that result.  

Analysts should take care when interpreting a CER result.  For instance, a loglinear CER developed using 

ordinary least squares will give the median of the distribution, not the mean.  Also, it is common for the 

standard deviation to be expressed in log space and it would need to be converted to unit space for use in the 

cost model.  See Appendix A.6.4 for details. 

 

Figure A-2  Objective bounds a function of distance from data center 
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A.3.4 Subjective Uncertainty 

In the context of cost and schedule estimating, many decisions that heavily influence the risk analysis will be 

subjective in nature, meaning they are based more on “expert opinion” than rigorous statistical analysis.  

Uncertainty is characterized as “subjective” when there is a lack of information to characterize it objectively.  

Subjective uncertainties have long been criticized for their lack of rigor and have relatively poor standing in 

fields driven by empirical study, where matters of precision and repeatability are considered paramount.  

Nevertheless, subjective uncertainty plays a large role in cost and schedule estimates due to limitations in 

time, resources and relevant data. 

A.3.5 Cost Estimating Uncertainty 

Cost estimating uncertainty is the uncertainty associated with the estimating method that is employed.  

General cost estimating methods include: analogy, engineering build-up, and parametric.  Each methodology 

and/or technique has its own, unique level of uncertainty. If the method is merely the sum of labor and 

material costs, the analyst must assess the cost uncertainty to capture rate, technical, configuration, and 

schedule uncertainty.  When the method is parametric or a single point analogy, there is technical, 

configuration, and schedule uncertainty embedded in the underlying data used to create the method.  For 

parametric CERs, the uncertainty is also a function of where the point estimate will fall in the data range (the 

further the input variable is from the center of mass data used to derive the CER, the greater the uncertainty 

of the CER).  Several other subjective factors may influence how the analyst should adjust (subjectively) the 

objective uncertainty associated with the method, such as: deficiencies in the quality of the data due to 

variations in contractors’ accounting practices; assumptions made to normalize the data; and other cost 

estimating influences not captured by the cost estimating method. 

A.3.6 Technical Uncertainty 

Ideally, to generate a parametric CER, the analyst will select and use relevant historical data that were 

successful in meeting similar technical challenges to the program being estimated.  By doing so, the 

technical uncertainty is at least somewhat captured by the analysis of that data.  However, if the program to 

be estimated is facing unusual technical challenges, then an adjustment to the CER uncertainty distribution is 

required.  The same can be said about an analogous estimate. 

A.3.7 Configuration Uncertainty 

Configuration uncertainty is the variation in the fundamental technical cost drivers of a WBS element.  

Configuration uncertainty is a form of technical uncertainty.  From the cost estimator’s perspective, 

configuration uncertainty falls into two categories:  uncertainty in input parameters that are captured by the 

cost model and uncertainty in parameters or basic configuration features that cannot be addressed without 

modifying the structure of the cost model.  An example of the first type of uncertainty event would be design 

changes that reduced the weight of an antenna by 12 lb. An example of the second kind of uncertainty event 

would be a requirements change that switched from a mechanically-steered antenna to a phased array 

antenna. 

A.3.8 Schedule Uncertainty 

Schedule uncertainty is the variation in the possible key dates associated with a WBS item.  The elemental 

units of a program’s schedule are called activities. A WBS item normally comprises several schedule 

activities.  The duration of the individual schedule activities is driven by three factors: the technical difficulty 

of the work to be performed, the qualifications of the people performing the work, and the availability of an 

adequate number of people/resources to do the work. In other words, schedule uncertainty is driven by 

technical uncertainty.  Schedule activities influence each other through precedence relationships (e.g., 

Activity C cannot begin until Activities A and B are complete).  Schedule precedence relationships often cut 
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across WBS items.  Because of these interrelationships, schedule slips in one WBS item can impact the 

duration of activities in other WBS items, and can actually increase the labor hours in the impacted items.  

Programs that have a high degree of technical interrelationship between activities and a high degree of 

concurrent activity inherently have high schedule uncertainty.  In other words, the topology of the program 

schedule has a strong impact on the schedule uncertainty. 

A.4 DESCRIPTIVE STATISTICS 

In this section we will provide the definitions for the most common statistics used to quantitatively describe 

the main features of a collection of data.  A univariate analysis is the process of describing the distribution of 

a single variable, including its central tendency (including the mean, median, and mode) and dispersion 

(including measures of dispersion (spread) such as the variance and standard deviation and the range and 

quartiles of the data set). The shape of the distribution may also be described via indices such as skewness 

and kurtosis (peakness). 

A.4.1 Expected Value, Average or Mean 

The expected value is the arithmetic average or mean of the distribution of possible values for a variable. For 

a given set of n values (y1, y2, …, yn), the mean ( y ) is defined to be the arithmetic average of these n values.  

In mathematical notations, it is given by 

Equation A-1  Arithmetic Mean 
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 The arithmetic mean is a composite measure and has the following characteristics: 

 The most widely known and used average 

 It is an artificial value, since it may not coincide with any actual value 

 It is affected by the value of every item, but may be unduly affected by extreme values especially in 

small data sets 

Figure A-3 shows how the expected value is simply the sum of all values divided by the number of values.  

Expected values have an important mathematical property: the sum of the expected values of a set of 

variables is equal to the expected value of the sum of the set of variables.  In other words, when summing the 

expected values of a number of WBS items, the result will be the expected value of the sum of the WBS 

items. 

A.4.2 Geometric Mean 

It is not common for statistical packages to report the geometric mean by default or as part of a descriptive 

statistics summary (for a discussion on the difference between the arithmetic and geometric mean in the 

context of cost analysis, see Reference 73).  It is, however, an important concept for cost analysis as it takes 

the effect of compounding into account.  The geometric mean is used when the average rate of growth is to 

be measured (as opposed to the arithmetic mean that is appropriate when the average of a number of values 

is of interest).  The geometric mean is given by: 

Equation A-2  Geometric Mean 

n
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To illustrate the proper use of the geometric mean, consider a situation where $100 is inflated from FY 2000 

for ten years.  We are accustomed to simply referring to inflation tables to extract and use the total inflation 

factor.  What if we were interested in calculating the mean inflation factor over the ten-year period? Table 

A-2 shows the explicit calculation of applying the OSD raw inflation year by year to arrive at the value at the 

end of 10 years of inflation (column 3 and 4).  Three different ways to calculate the mean inflation are 

illustrated in columns 5 – 7: two are incorrect and one is correct. 

 Method A calculates the difference between the ending and beginning values; divides by the original 

value (100); and further divides that by the number of periods (1) to arrive at a mean inflation 

 Method B is the arithmetic mean of the ten inflation factors 

 Method C is the geometric mean of the ten inflation factors and is the correct method 

Method A, in this case, returns the least accurate result.  Method B may be intuitive for some, and in this 

case it is near the correct result, but it is nonetheless wrong.  Method C delivers the correct result, 

demonstrating that when the result depends on individual rates being multiplied together, the geometric mean 

is the correct approach. 

Table A-2  Geometric Mean Example 

 

A.4.3 Median 

The median is the point in a distribution where half the observed values will be lower and half will be higher 

(the 50th percentile). In other words, this is the point where the actual cost is just as likely to be higher as it is 

to be lower.  For a finite number of observations, if the sample size is odd, the median is the middle value.  If 

the sample size is even, the median is the average of the middle two values.  The sum of the medians of all 

lower level WBS elements is not equal to the median of the parent WBS element, except in the unusual case 

in which the distributions of all the WBS items are perfectly symmetrical. 

A.4.4 Most-likely Value (Mode) 

The mode is the most probable single value for a variable (the peak of the distribution, see Figure A-3).  The 

independent variables of a cost estimating relationship (CER) are often interpreted as most-likely values.  

1 2 3 4 5 6 7

End of OSD Inflation Inflate by Direct Inflate Using Mean From:

FY Inflation Factor Year Calculation A B C

2000 100.00 100.00 100.00 100.00

2001 1.80% 1.018 100.00 * 1.018 = 101.80 102.06 101.89 101.89

2002 0.80% 1.008 101.80 * 1.008 = 102.61 104.15 103.82 103.81

2003 1.00% 1.010 102.61 * 1.010 = 103.64 106.29 105.78 105.77

2004 2.00% 1.020 103.64 * 1.020 = 105.71 108.48 107.78 107.76

2005 2.80% 1.028 105.71 * 1.028 = 108.67 110.71 109.81 109.80

2006 3.10% 1.031 108.67 * 1.031 = 112.04 112.98 111.89 111.87

2007 2.70% 1.027 112.04 * 1.027 = 115.07 115.31 114.00 113.98

2008 2.40% 1.024 115.07 * 1.024 = 117.83 117.68 116.16 116.13

2009 1.50% 1.015 117.83 * 1.015 = 119.60 120.09 118.35 118.32

2010 0.80% 1.008 119.60 * 1.008 = 120.5532 122.5621 120.5912 120.5532

Total Inflation 120.55 - 100.00 = 20.55

Mean Inflation 1 + 20.55/100/10 = 1.0206  A

Inflation

Factor

Arithmetic Mean 1.01890  B

Geometric Mean 1.01887  C
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However, the CER’s result (i.e. the point estimate) for a WBS item is typically interpreted as the mean or 

median.  Even if all the WBS element point estimates were modes, their sum would not equal the most-likely 

value of total result, except in the unusual case in which the distributions of all the WBS items are 

symmetric. 

A.4.5 Skewness vs Skew 

A distribution is said to be skewed if one of its two tails is longer than the other.  For example, if there is a 

long tail to the right of the distribution, then it is said to be positively skewed (or skewed right).  This means 

that the distribution has a long tail in the positive direction.  Similarly, if there is a long tail to the left, then 

the distribution is said to be negatively skewed (or skewed left).  If the distribution is symmetrical, then the 

distribution has no skew.  For example, the normal distribution has a skewness value of 0 since it is a 

symmetric distribution. 

For a random variable Y, the measure of skewness is a parameter that describes asymmetry in the probability 

distribution of Y.  It is defined by 

 Equation A-3  Skewness 
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where  and  are the mean and standard deviation of the random variable Y, respectively. As for a sample 

data set of n values (y1, y2, …, yn), the formula to compute the skewness factor is given below: 

Equation A-4  Skewness for a Sample 
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where s is used to denote the sample standard deviation. Note that Equation A-4 is the adjusted Fisher-

Pearson standardized moment coefficient. It is used to calculate the skewness measure in Excel and several 

statistical packages, including Minitab, SAS, and SPSS.  As a general rule, the mean is larger than the 

median in positively skewed distributions and less than the median in negatively skewed distributions.  

Although counter examples can be found, they are rare in real data. 

Another definition of skew, used in this handbook and commonly used elsewhere, is the measure of the 

area to the left of the mode of the distribution.  If the area is half the total area, the distribution is symmetric. 

A skew of 0.25 would mean that 75% of the distribution is to the right of the mode, making it a skewed right 

distribution.  In the case of triangular distributions the skew can be calculated from the min, mode and max 

given the area under any probability distribution is equal to 1.  The formula reduces to: 

Equation A-5  A Simpler Skew Formula Applicable to Triangles 

 Triangular Skew = (Mode-Min)/(Max-Min) 

The same equation can be used for a uniform distribution.  Since there is no mode in a uniform distribution, 

the point estimate position in the uniform distribution can be used in place of the mode in the skew equation.  

That is, the formula describes the probability to the left of the point estimate for a uniform distribution.  This 

concept is used to calculate the adjustment for skew described in Section 2.5.4 for a uniform distribution. 
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A.4.6 Variance 

The variance is the average squared distance of each value from the mean, but it is not expressed in the units 

of measure of the mean or the original data.  Rather, the data is expressed in units of measure of the original 

data squared.  The measure of variance is greatly affected by extreme values. To calculate the variance, first 

calculate the arithmetic mean and then for each data point, find the difference between the point and the 

mean.  Next, square all these differences and sum them.  This sum is then divided by the number of items in 

the data set (if the data is from a sample rather than the entire population, the sum is divided by the number 

of items minus one). 

A.4.7 Standard Deviation 

The standard deviation is one of the most widely used statistics for measuring the spread, or dispersion, of 

values in a population of data.  For a given set of n values (y1, y2, …, yn), the standard deviation (Stdev or S) 

is defined by  

Equation A-6  Standard Deviation For a Sample or Population 
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In essence, the standard deviation measures the amount of spread about the mean in the data set. It is also 

greatly affected by extreme values. The standard deviation is the square root of the variance.  However, 

unlike the variance, the standard deviation is in the same unit of measure as the data, and this is a primary 

reason for its popularity.  By default, tools like Excel calculate the sample standard deviation. 

A.4.8 Coefficient of Variation 

The coefficient of variation (CV) of a distribution is defined as the ratio of the standard deviation to its mean. 

Equation A-7  Coefficient of Variation 

 CV =  Stdev/Mean 

CV is a relative measure of dispersion because it expresses the standard deviation as a percentage of the 

mean.  CV is one of the more recognized metrics to characterize the spread in a sample or a population.  

Whenever an S-curve is displayed, the CV should also be displayed.  Without it, the scale of the chart can 

provide a misleading sense of the dispersion. CV is also known as a normalized measure of dispersion for 

data that can only take non-negative values. The measure of CV would be meaningless for a data set running 

from a negative region to a positive region. 

A.4.9 Inter-quartile Range 

The inter-quartile range is the length of the interval that contains the middle fifty percent of the values in an 

ordered data set.  The ordered data is broken into four roughly equal groups.  The first quartile separates the 

lowest valued quarter from the second quarter.  The second quartile (the median) separates the second 

quarter from the third quarter.  The third quartile separates the third quarter from the last quarter.  The inter-

quartile range is the difference between the end of the first quartile and the beginning of the third quartile, 

which covers the middle fifty percent of the values in the data set. 
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A.5 PROBABILITY 

A.5.1 Overview 

Probability is the relative frequency of an outcome of a repeatable, observable experiment. Probability is 

measured on a scale between 0 and 1.  Probability is assigned to each outcome of an experiment based on its 

relative frequency where 1 represents always and 0 represents never. 

A.5.2 Probability Distribution 

A probability distribution is a mathematical formula that describes how the relative frequency of occurrence 

is assigned to the real numbers in the range of a random variable. The distribution may be described by either 

a density function p(x) or a cumulative probability function F(x). These functions are two different 

presentations of the same data.  In Figure A-3, the dark, curved line represents the statistical distribution 

underlying the sample data shown in the table at the left.  This type of curve is also called a Probability 

Density Function (PDF). 

 

Figure A-3  Distribution Example 

A.5.3 Probability Density Function (PDF) 

A continuous PDF  is a function that describes the relative likelihood of a random variable to be a given 

value. The area under any PDF is equal to 1.  The area under a pdf for a specific interval identifies the 

probability associated with that interval. 

A.5.4 Cumulative Distribution Function (CDF) 

The CDF is a mathematical curve that identifies the probability that the actual value will be less than or equal 

to the given value.  When shown graphically, the CDF is an S-shaped curve. The term S-curve is used 

synonymously with CDF. In mathematical terms, the definition of the cumulative distribution function of a 

random variable X gives the probability of obtaining a value equal to or less than x.  The value of X is also 

called the x percentile. 
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Equation A-8  Cumulative Distribution Function (CDF)  

 




x

dxxfxXP )()(  

The value of a cumulative distribution function is bounded between 0 and 1, with 0.5 indicating the median 

of the population as illustrated in Figure A-4. 

 

Figure A-4  Cumulative Probability Distribution (CDF) 

 

A.6 PROBABILITY DISTRIBUTIONS 

Probability distributions are a central feature of any uncertainty model.  They are used to define the potential 

range of a CER result and/or the variables that drive them.  This section describes basic characteristics of 

common probability distributions used in uncertainty models. 

A.6.1 Normal Distribution 

The normal distribution is a continuous probability distribution, defined on the entire real line. It has a bell-

shaped probability density function, sometimes called a bell curve.  A normal distribution is often used as a 

first approximation to describe real-valued random variables that cluster around a single mean value. 

The normal distribution probability density (PDF) function is also known as the Gaussian function or 

informally as the bell curve.  The PDF is given by: 

Equation A-9  Normal Probability Density Function (PDF) 
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Where: 

μ is the mean  

σ
2
 is the variance.  

σ is known as the standard deviation.  

 

Cumulative Probability Distribution

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

Cumulative

Probability

MedianMinimum X Value Maxium X Value
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On a non-truncated normal distribution the mean, median and mode are all the same.  The distribution with  

μ = 0 and σ = 1 is called the standard normal distribution or the unit normal distribution and is usually 

denoted by Z.  Figure A-5 compares Z with other normal distributions with various standard deviations.  

  

Figure A-5  Normal Distribution Probability Density Function 

The cumulative distribution function (CDF) describes probability of a random variable falling in the interval 

[−∞, x].  The CDF of the standard normal distribution is denoted with the capital Greek letter Φ (phi), and 

can be computed as an integral of the probability density function: 

Equation A-10  Normal Cumulative Distribution Function 
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This integral cannot be expressed in terms of elementary functions, so is simply called a transformation of 

the error function, or erf, a special function.  For a generic normal random variable with mean μ and variance 

σ
2
 > 0 the CDF will be equal to: 

Equation A-11  Generic Normal Cumulative Distribution Function 
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where   is defined on the entire real line. 

A.6.2 Student’s-t 

The Student’s t-distribution (or simply the t-distribution) is a family of continuous probability distributions 

that arises when estimating the mean of a normally distributed population in situations where the sample size 

is small (less than 30) and population standard deviation is unknown. 

Student's t-distribution has the probability density function given by: 

Equation A-12  Student’s-t Probability Density Function 
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Where: 

ν is the number of degrees-of-freedom  

Γ is the Gamma function.  
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In regression analysis, the degrees-of-freedom is number of sample points minus number of estimated 

parameters.  The student’s-t distribution, illustrated in Figure A-6, may also be written as: 

Equation A-13  Student’s-t Probability Density Function Alternative Form 
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where B is the beta function. 

  

Figure A-6  Student’s-t Probability Density Function 

 

The cumulative distribution function can be written in terms of I, the regularized incomplete beta function.  

Equation A-14  Student’s-t Cumulative Distribution Function 
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A.6.3 Lognormal Distribution 

In probability theory, a lognormal distribution is a continuous probability distribution of a random variable 

whose logarithm is normally distributed. If X is a random variable with a normal distribution, then Y = 

exp(X) has a lognormal distribution; likewise, if Y is lognormally distributed, then X = log(Y) has a normal 

distribution. A random variable which is lognormally distributed takes on only positive real values. 

http://en.wikipedia.org/wiki/Incomplete_beta_function
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The probability density function, illustrated in Figure A-7, of a lognormal distribution is: 

Equation A-15  Lognormal Probability Density Function 
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Figure A-7 Lognormal Probability Density Function  

Equation A-16  Lognormal Cumulative Distribution Function 
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Where: 

erfc is the complementary error function 

Φ is the cumulative distribution function of the standard normal distribution 

Properties of the lognormal distribution in unit space can be calculated as follows: 

Equation A-17  Lognormal Mean 

    
    

Equation A-18  Lognormal Median 

   

Equation A-19  Lognormal Mode 

    
 
 

Equation A-20  Lognormal Variance 
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A.6.4 Calculating Alternative Lognormal Parameters 

Analysts (and tools) have preferred ways for defining a lognormal distribution.  In this section, Table A-3, 

Table A-4 and Table A-5 provide some common translations.  In these tables, the “85% Bound” is the 85% 
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value divided by the median.  This is provided to support those wishing to define the 85% bound as a percent 

of the lognormal median which is a common assumption for the location of the point estimate within the 

lognormal.  Additionally, note Standard Error (SE) and Standard Error of the Estimate (SEE) have the same 

meaning and are used interchangeably in these tables. 

 Table A-3  Calculate Lognormal Parameters Given Unit Space Mean and Std Dev 

  

 

Table A-4  Calculate Lognormal Parameters Given Unit Space Median & Std Dev 

  

 

Table A-5  Calculate Lognormal Parameters Given Unit Space Median & Log Space SEE 

 

Unit Space Input Log Space Unit Space

WBS Element Mean Std Dev Median Mean SEE 85% Value 85% Bound

CER Result 100.0000 35.0000 94.39 4.5474 0.3399 134.25 142.24%

Unit Space Mean From regression report

Unit Space Stdev From regression report

Unit Space Median Exp(MeanLogSpace)

Log Space Mean LN(MeanUnitSpace)-SElogSpace 2̂/2

Log Space SE SQRT(LN(StdevUnitSpace 2̂/(MeanUnitSpace 2̂)+1))

85% of Median LOGINV(0.85,MeanLogSpace,SElogSpace)/MedianUnitSpace

Unit Space Input Log Space Unit Space

WBS Element Mean Std Dev Median Mean SEE 85% Value 85% Bound

CER Result 100.0000 35.0000 94.39 4.5474 0.3399 134.25 142.24%

Unit Space Mean MedianUnitSpace*EXP((SElogSpace 2̂)/2)

Unit Space Stdev From regression report

Unit Space Median From regression report

Log Space Mean LN(MedianUnitSpace)

Log Space SE SQRT(LN((1+SQRT(1+4*(SdevUnitSpace/MedianUnitSpace) 2̂))/2))

85% of Median LOGINV(0.85,MeanLogSpace,SElogSpace)/MedianUnitSpace

Unit Space Input Log Space Unit Space

WBS Element Mean Sdev Median Mean SEE 85% Value 85% Bound

CER Result 100.0000 35.0000 94.39 4.5474 0.3399 134.25 142.24%

Unit Space Mean EXP(MeanLogSpace+SElogSpace 2̂/2)

Unit Space Stdev ((EXP(SElogSpace 2̂)-1)*MeanUnitSpace 2̂) 0̂.5

Unit Space Median CER result

Log Space Mean LN(MedianUnitSpace)

Log Space SE From regression report

85% of Median LOGINV(0.85,MeanLogSpace,SElogSpace)/MedianUnitSpace
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A.6.5 Log-t Distribution 

This distribution is typically used to quantify the uncertainty for a point estimate obtained from a CER that 

was created from a small sample set and the error term of the CER is assumed to follow a lognormal 

distribution. 

The log-t distribution is derived from a student’s-t distribution.  If a random variable X follows a student’s-t 

distribution with n degrees of freedom, then Y = exp( + X) has a log-t distribution with the location 

parameter (), the scale parameter (), and n degrees of freedom. The probability density function of Y is 

given by the following formula: 

Equation A-21  Log-t Probability Density Function 
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for y > 0 

The parameters for the log-t distribution are the (1) location parameter (, (2) scale parameter (, and (3) 

degrees of freedom (n). Both the location and scale parameters are evaluated in log space. 

 

The CDF of a log-t random variable Y (Y ~ log-t(,,n)) can be expressed as follows (in terms of its 

probability density function):  

Equation A-22  Log-t Cumulative Distribution Function 
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Where: 

FLt denotes the CDF of log-t(,,n) 

n is an integer 

Ft is the CDF of a t distribution with n degrees of freedom 

LN stands for the natural logarithm. 

 

The mean of the log-t distribution does not exist because the right tail is too heavy.  Other properties of the 

log-t distribution in unit space can be calculated as follows: 

Equation A-23  Log-t Mode 

 )4)1()1((*5.0exp 22  nnnMode 
 

A.6.6 Triangular Distribution 

The triangular distribution is a continuous probability distribution with lower limit a, upper limit b and mode 

c, where a < b AND a ≤ c ≤ b. The probability density function, illustrated in Figure A-8, is given by: 
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Equation A-24  Triangular Probability Density Function 
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whose cases avoid division by zero if c = a or c = b. 

  

Figure A-8  Triangular Probability Density Function 

 

The cumulative distribution function is given by: 

Equation A-25  Triangular Cumulative Distribution Function 
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Properties of the triangular distribution can be calculated as follows: 

Equation A-26  Triangular Mean 
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Equation A-27  Triangular Median 
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Equation A-28  Triangular Variance 

             
                  

  
 

 

A.6.7 Beta Distribution 

In probability theory and statistics, the beta distribution is a family of continuous probability distributions 

defined on the interval [0, 1] parameterized by two positive shape parameters, denoted by α and β, that 

appear as exponents of the random variable and control the shape of the distribution. The beta distribution 

has been applied to model the behavior of random variables limited to intervals of finite length in a wide 

variety of disciplines 

The probability density function of the beta distribution, for 0 ≤ x ≤ 1, and shape parameters α > 0 and β > 0, 

illustrated in Figure A-9, is a power function of the variable x and of its reflection (1−x) as follows: 

Equation A-29  Beta Probability Density Function 

     
    (   )   

 (   )
 

The beta function, B, appears as a normalization constant to ensure that the total probability integrates to 

unity. 

  

Figure A-9  Beta Probability Density Function 

The cumulative distribution function is given by: 

Equation A-30  Beta Cumulative Distribution Function 
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 (     )
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where  (     ) is the incomplete beta function and   (   ) is the regularized incomplete beta function. 

The regularized incomplete beta function is the cumulative distribution function of the beta distribution. 

Properties of the general beta distribution where the minimum and maximum can be any value (rather than 

assumed to be 0 and 1) can be calculated as follows: 

Equation A-31  Beta Mean 
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where a=minimum value and b=maximum value 

Equation A-32  Beta Variance 
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A.6.8 BetaPERT Distribution 

The betaPERT distribution is a variation of the beta distribution, but only requires three parameters: 

minimum, most-likely and maximum.  The fourth parameter can be determined by assuming a relationship 

between the mode and the minimum and maximum.  The most common assumption, used by all popular 

simulation tools is that the mode is weighted four times as much as the minimum or maximum.  With that 

assumption in mind,   and   of the beta distribution can be calculated as follows (see Reference 62): 

 Equation A-33  BetaPERT Calculating Alpha and Beta for the Beta Distribution 
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Where a= min, b= max and c = the mode 

Properties of the betaERT can be calculated as follows:  

Equation A-34  BetaPERT Mean 
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For a and b > 1, the mode can be found as follows: 

Equation A-35  BetaPERT Mode 
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Equation A-36  BetaPERT Variance 

         (
 

   
) (

 

   
)(

(   ) 

     
) 



 Joint Agency Cost Schedule Risk and Uncertainty Handbook 

  A-23 

A.6.9 Uniform Distribution 

The continuous uniform distribution or rectangular distribution is a family of probability distributions such 

that every value is equally probable. Defined by the two parameters, a and b, which are its minimum and 

maximum values, the distribution is often abbreviated U(a,b). 

The probability density function is given by 

Equation A-37  Uniform Probability Density Function 
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The cumulative distribution function is given by: 

Equation A-38  Uniform Cumulative Distribution Function 
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The uniform distribution does not have a mode.  Other properties for the uniform distribution can be 

calculated as follows: 

Equation A-39  Uniform Mean 
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Equation A-40  Uniform Median 
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Equation A-41  Uniform Variance 
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A.7 REGRESSION METHODS 

Regression analysis is a statistical technique used to find relationships between variables for the purpose of 

predicting future values.  In cost estimating, regression analysis is used to develop cost estimating 

relationships (CERs) between a dependent variable (cost) and one or more independent variables (cost 

drivers such as weight, power, volume, etc.) from completed project data. By a statistical relationship it is 

meant that the observed variation of the dependent variable (cost) across similar projects can be explained or 

predicted by one or more independent variables (technical, performance, programmatic, etc.).  The objective 

is to find the functional relationship that most accurately estimates the cost of a particular element in a 

project work breakdown structure.  Additionally, the regression method should yield an objective assessment 

of the predictive capability of the CER.  This assessment provides an objective basis for characterizing the 

uncertainty of the CER itself. 
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There are various techniques available to perform regression analysis.  In order to correctly assign the 

appropriate uncertainty distribution to a given CER, the analyst needs to know how the CER was generated.  

The objective uncertainty distribution is a function of the method employed.  Several of the most popular 

methods are described in the following sections along with guidance on how to capture their uncertainty in a 

simulation-based cost risk and uncertainty model. 

A.7.1 Ordinary Least Squares (OLS) 

Ordinary least squares is one of the most popular methods to employ because it is easy, the theory is well 

known, the CERs tend to be easy to understand and it yields meaningful descriptive statistics to characterize 

its significance and predictive power. It is a mathematical optimization technique used to find a "best linear 

fit" to a set of data.  The object is to minimize the sum of the squared errors (SSE) which is the sum of the 

squared difference between the fitted line (i.e. the predicted values of the CER) and the source data for each 

data point.  The goal of the OLS method is to find the linear equation such that the sum of all the squared 

deviations is as small as possible.  Expressed mathematically, the best-fitting line is derived by solving for 

the coefficients (i.e., 0, 1, …, k) in the following equation such that SSE is minimized: 

Equation A-42  Ordinary Least Squares 

  kk XXXY ...22110  where  is a random error term 

Minimize 
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where: n = the total number of data points in the sample 

Yi = the i
th
 observed value of the dependent variable (i.e., cost) 

iŶ  = the i
th
 estimated value 

In the context of cost estimating, Y is generally cost, man-hours or some other effort or resource.  X is 

generally some technical or performance characteristic or metric that helps to explain the variation in cost 

across a number of projects.  More than one X parameter might be found to be statistically significant in 

explaining cost variation. 

A.7.2 Log-Error SEE 

If the regression model is fit in log space, the SEE measure is given by 

Equation A-43  Standard Error of the Estimate for a Log Error 
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The Log-Error SEE is not stated with the units (e.g. dollars) of Y.  For definitions of SSE, dfe and MSE, see 

Appendix A.8.2. 

A.7.3 Other Multiplicative Error Term Regression Techniques 

Multiplicative error terms are preferred in the cost analysis field because experience tells us that the error of 

an individual observation (e.g., cost) is generally proportional to the magnitude of the observation (not a 

constant).  The general specification for a CER with a multiplicative error is stated as: 
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Equation A-44  Multiplicative Error Term CER Specification 

iii fY ),( βx       for i = 1, …, n 

where: 

 n = sample size 

 Yi = observed cost of the i
th

 data point, i = 1 to n 

 f (xi,) = the value of the hypothesized equation at the i
th

 data point 

  = vector of coefficients to be estimated by the regression equation 

 xi = vector of cost driver variables at the i
th

 data point 

 i = error term with mean of 1 and variance 
2  

Minimization algorithms can be explored for modeling CERs with multiplicative errors based upon a 

generalized error term definition: 

Equation A-45  Generalized Error Term 
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where ei is normally distributed with a mean of 0 and variance 
2 . 

This error term expresses the error of estimation as a percentage of the estimate.  The percentage error 

represents the percent error of the residual about the regression function and the optimization objective is to 

find the coefficient vector  that minimizes the sum of squared eis. 

A.7.4 Minimum Unbiased Percentage Error (MUPE) Method 

A refinement to Minimum Percentage Error (MPE) was proposed in Reference 15 and 25 to solve for the 

function in the numerator separately from the function in the denominator through an iterative technique. 

Equation A-46  MUPE Minimization Formulation 
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where k is the iteration number and the other terms are as defined previously. 

This optimization technique is called the Minimum-Unbiased-Percentage Error (MUPE) method; it is also 

referred to as Iteratively Reweighted Least Squares (IRLS).  As shown in the equation above, the weighting 

factor of each residual in the current iteration is equal to the reciprocal of the predicted value from the 

previous iteration.  The final solution is derived when the change in the estimated coefficients ( vector) 

between the current iteration and the last iteration is within the analyst-specified tolerance limit.  No 

transformation or adjustment (to correct the bias in unit space) is needed to fit a MUPE CER.  Goodness-of-

fit measures (or asymptotic goodness-of-fit measures) can be applied to judge the quality of the model under 

the “normality” assumption (i.e., i ~ N(1,
2
)). The MUPE CER has no "positive" sample bias; it has zero 

proportional error for all points in the database.  It is an unbiased estimator of the model mean if the function 

is linear.  Also, it produces consistent estimates of the parameters. 
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A.7.5 ZPB/MPE Method (or ZMPE Method) 

There is another alternative method (see Reference 10, 18, 50, 83) to reduce the positive bias for MPE CERs 

and yet maintain the same objective function.  Mathematically, it is stated as follows: 

Equation A-47  ZMPE Minimization Function 
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This alternative method is called the “Constrained Minimum Percent Error” solution.  It is also referred to as 

the MPE method under the Zero-Percentage Bias constraint, i.e., the ZPB/MPE or ZMPE method by Book 

and Lao, 1997 (see Reference 18). 

A.7.6 Iterative Regression Techniques 

The Gauss–Newton algorithm is a method used to solve non-linear least squares problems.  It has been 

observed to have convergence problems on many datasets.  For this reason there has been considerable 

interest in other methods. There are several different non-linear optimization techniques that might be used 

to fit non-linear functional forms to data.  Well known techniques include Quasi-Newton, Conjugate 

Gradient, Downhill Simplex, and Marquart’s methods.  Non-linear regression techniques do not typically 

result in the normal types of statistics expected when performing OLS or MUPE.  For example, rather than 

reporting traditional t-statistics, a non-linear regression will report approximate prediction ranges for each 

coefficient.  

A.7.7 Error Term Summary 

Regardless what method is used to generate the CER, it is very important that the user of the CER is aware 

of the CER result meaning and how the error should be modeled.  Generally, lognormal distributions should 

be used as a default approach. If normal distributions for cost or effort are selected, they should be supported 

by appropriate supporting evidence. 

For relatively small data sets, all CER best-fit methods tend to underestimate the level of underlying 

dispersion (as measured by the standard error) in the population as a whole. The result is a regression 

equation that is likely to be substantially different from the underlying relationships between the cost and its 

driver variables and (on the average) an underestimate of dispersion.  Although there is a statistical bias 

(underestimating the underlying dispersion), in any given case, the CER dispersion can also be greater than 

the underlying dispersion. 

The best way to assess the likelihood of an abnormally low (or high) SE is by comparing many CERs for 

similar products. Specifically, if the CERs have different size data sets (and degrees of freedom), the SE 

value for each CER should be plotted against its degrees of freedom (DF). CERs with low DF that are far 

away from the average should be used carefully. If they represent costly products and hence play a 

significant role in determining the overall system cost variance, then remedial action may be appropriate in 

the form of subjective, expert opinion increases (or decreases) to the CER SE. 
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A.8 ESTIMATING REGRESSION METHOD ACCURACY 

A.8.1 The Use of Student’s-t and Log-t Distributions 

There are two types of error terms for a CER, additive or multiplicative, and they are given by: 

Equation A-48  Additive Error Term 

Y = f(x) + 

Equation A-49  Multiplicative Error Term 

Y = f(x)* 

For an additive error term, the student’s-t is an appropriate error distribution while the log-t is appropriate for 

the multiplicative error term when less than 30 data points are available.  In either case, three parameters are 

required to fully define the distribution.  Available parameters in ACE and Crystal Ball for the student’s-t 

include: 

 Two points on the curve (such as low, high, median) along with their associated percentiles 

 Degrees of freedom 

 Scale, populated by the adjusted SEE. 

Note: you can either specify two points on the curve or the scale parameter of the distribution, but you must 

enter the degrees of freedom, which is a required input.  Although the uncertainty distribution for an 

additive-error model is generally assumed to be normal (as in OLS), the student’s t distribution is chosen to 

adjust for the degrees of freedom for small samples. When the sample size n is sufficiently large, say n > 50, 

you can select normal distribution instead. Here, the PE is assumed to be the mean of the normal distribution, 

which is the same as the median for a student’s t distribution. 

@RISK is somewhat different.  It only requires the degrees of freedom because it models the standardized 

student’s-t distribution of which the median is 0 and the variance is given by the following formula: 

Equation A-50  Calculate Student-t Variance Given Degrees of Freedom (Mean is Zero and Scale is One) 

 

   
 

For degrees of freedom  v > 2 

It is necessary to scale the @RISK distribution based on the parameters of your random variable.  To scale 

the @RISK result, multiply by one of the following equations: 

Equation A-51  Formula to Scale the Standardized Student’s-t Given a Value Above the Median 
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Equation A-52  Formula to Scale the Standardized Student’s-t Given a Value Below the Median 
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where: 

t
-1

(p,df)  (commonly denoted by t1-p,df) is the (100p)
th

 percentile of the student’s-t distribution 

with mean of zero, scale 1, and a specific degrees of freedom (denoted by df) 
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TINV  is an Excel function, which calculates the inverse of a cumulative t distribution at a 

specified probability level (see the help of the TINV function in Excel for details) 

p  is used to denote the probability level of the given percentile 

For the multiplicative error term, it is common to assume it follows a lognormal distribution, especially when 

f(x) = a*x^b (i.e., an OLS log-linear CER). The Log-T distribution is used to capture the effect of low 

degrees of freedom.  When the sample size is sufficiently large (>30), the lognormal is appropriate. 

For a MUPE CER select a student’s-t distribution when the CER’s SPE is moderately tight (say < 0.4 or 0.5).  

A.8.2 Additive Error SEE 

For CERs with additive error terms (for example, linear OLS), the standard deviation of the dependent 

variable (Y) is assumed to be the same across the entire range of the data, regardless of the value of the 

independent variables.  Mathematically, it is equal to the square root of the mean squared error (MSE).  If the 

regression model is fit in unit space, the SEE measure is given by:  

Equation A-53  Standard Error of the Estimate 

MSE
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Where dfe is the number of degrees of freedom of the sum of squares error (SSE).  Dfe is the number of 

observations (n) minus the total number of estimated coefficients in the equation (p).  The SEE measure is 

typically stated in absolute terms (i.e., if Y is in dollars then the SEE is in dollars as well). 

A.8.3 Defining a Prediction Interval From SEE 

A proper measure of the quality of the regression estimate for a future observation is the Prediction Interval.  

The prediction interval accounts for the sample size and the location of the estimate within the data used to 

create the regression.  The further from the center of the regression data, the greater the uncertainty.  SEE is 

an average measure.  The prediction interval adjusts the SEE to account for location. 

The regression equation estimates a value based upon the independent variable(s) for the project in question.  

But the point estimate is almost surely not exactly right.  A prediction interval provides a range of values in 

which the actual value can be expected to fall with a certain degree of confidence.  For example, “There is a 

90% probability that the warhead cost will be between $48K and $64K.”  A prediction interval of a 

parametric CER is calculated from the: 

  standard error of the CER 

 CER sample size (i.e., the number of data points used to derive the CER) 

 desired confidence level 

 distance from the center of the CER’s independent variables to the location of the independent 

variable of the point being estimated 

A prediction interval can be thought of as a range defined by the point estimate plus or minus some number 

of adjusted standard errors (standard errors adjusted for prediction).  This adjusted standard error is a 

function of the standard error of the regression, the size of the database used in the CER development, and 

the “distance” of the estimating point from the center of the database as exemplified by the means of all the 
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independent (driver) variables. In the simple case of one independent variable [X], the adjusted standard 

error is specifically defined by the following: 

Equation A-54  Adjusted Standard Error 

 n

S

n
SESEAdj

X

2
x - Xe

1
1*.











 

Where: 

Adj. SE = adjusted standard error for prediction interval 

SE = CER standard error (data must be normalized for base year, adjustments, quantity) 

Xe = the value of the independent variable used in calculating the estimate 

x  = the mean of the independent variable in database 

SX = uncorrected sample standard deviation of the independent variable 

n = the number of data points 

In a simple linear CER where Y =  + X + , a 95% prediction interval when X = xo is given by 

Equation A-55  Linear CER 95% Prediction Interval 
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0ŷ
 is the estimated cost from the CER when X = xo 

 t0.025,(n-2) is the upper 2.5% cut-off point of student’s-t distribution with (n-2) degrees of freedom. 

As one moves away from the mean of the CER dataset, the adjusted standard error is always greater than 

the SEE.  Thus, using the SEE as a quantifier for uncertainty underestimates the true error unless the point of 

interest is at the mean of the data.  For estimating points not near the dataset mean, the difference can be 

significant.  This is especially true when the CER is used beyond the range of the data used in developing the 

CER. 

If a simple linear CER is fit in log space, assuming the multiplicative error term: 

Equation A-56  Linear CER Fit in Log Space  

Yi = (Xi


) i 

for i = 1,…, n 

The (1-)100% prediction interval (PI) for a future observation Y, when X = xo is given by 

Equation A-57  Prediction Interval for a Linear CER Fit in Log Space 
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where: 

0ŷ   = the estimated value in log space when X = x0,  

x0 = the value of the independent variable used in calculating the estimate 

)(xLN   = the average value of the independent variable evaluated in log space,  

SE = the standard error of estimate in log space 

Adj. SE = the adjusted standard error for PI in log space 

SSxx = the sum of squares of the independent variable about its mean (in log space)  

“LN”  = the natural logarithm function 

The above PI equations can be extended to CERs with multiple drivers. For example, if there are several 

predictors in a linear CER, namely, Y =  + X1 + X2kXk, the PI can be computed using 

matrix operations. A (1-)100% PI for a future observation Y at a given driver vector xo is then given below: 

Equation A-58  Prediction Interval For CERs with Multiple Independent Variables 

).(*)(ˆ)'()')((1**)(ˆ
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where: 

0ŷ  = the estimated value of Y from the CER when x = xo 

xo = (1, x1o, ..., xko), a row vector of given driver values and 1 is for the intercept 

p = the total number of estimated parameters, including the intercept (p = k+1) 

n  = the number of data points 

t(/2,n-p) = the upper /2 cut-off point of student’s-t distribution with (n-p) DF 

SE = CER’s standard error of estimate  

Adj. SE = the adjusted standard error for PI 

X = the design matrix of the independent variables 

 (The apostrophe superscript denotes the transpose of a vector or a matrix.) 

If not all statistics of the CER are available, the Adjusted Standard Error can be calculated with the following 

equation based on a distance assessment of the primary independent variable. 

Equation A-59  Simplified Adjusted Standard Error 

n

stdsample

n
SESEAdj

2

distance

1
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where: 

distance = distance between the point estimate independent variable value and the center of the 

independent variable data used to generate the CER 

sample std = uncorrected sample standard deviation of the primary independent variable 

Note that this distance assessment need only be characterized in terms of a number of standard deviations 

from the center.  For example, if the distance is assessed as approximately 2 sample standard deviations of 

the driver variable, then the ratio (of “distance” to “sample std”) becomes 2.  For simplicity, the following 

default values address the assessment of this ratio based upon the similarities between the systems: 
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For example, if the system being estimated is deemed very similar to the database from which the CER was 

developed, this qualitative assessment might translate into a quantitative assessment of the ratio with a value 

of 0.25.  Similarly, if the system being estimated is deemed very different from the database from which the 

CER was developed, this qualitative assessment might translate into a quantitative assessment of the ratio 

with a value of 3.0.  Using these default values the adjusted standard error can then be calculated. 

In addition, if no statistical information is available, then the Adjusted Standard Error can be chosen 

subjectively based on a subjective distance assessment of the primary independent variable and the relative 

sample size.  Table A-6 provides a list of multipliers that can be used to estimate the Adjusted SE. 

Table A-6  Standard Error Adjustment Factors  

  

Figure A-10 illustrates the use of the standard error adjustment factor.  The correct prediction interval high 

value is calculated to be (A) 123.01% of the point estimate at the 90% interpretation.  (For guidance on how 

to calculate a prediction interval, see Appendix A.8.5 and A.8.8).  This is compared with the lognormal 

based upon the reported SEE in log space (B) 0.1413.  The regression SEE underestimates the standard 

deviation (C) and 95th percentile (D).  If, however, the SEE multiplied by the adjustment 1.267, which is 

consistent with 10 data points and an assessment that the source data is “different” for the project to be 

estimated, the adjusted SEE is 0.1790 (E) and the results are more conservative than those obtained using 

SEE alone.  The adjustment factor approach tends to over compensate, but is a reasonable, conservative and 

simple approach when statistical tools and/or source data is unavailable for a more precise estimate. 

 

Figure A-10  Compare Calculated Prediction Interval with Estimated Approach 

Number of Data Points in Sample

5 10 15 20 25 30

0.00 1.095 1.049 1.033 1.025 1.020 1.017 Very Similar

0.25 1.101 1.052 1.035 1.026 1.021 1.018

0.50 1.118 1.061 1.041 1.031 1.025 1.021

0.75 1.146 1.075 1.051 1.038 1.031 1.026 Similar

1.00 1.183 1.095 1.065 1.049 1.039 1.033

1.25 1.230 1.121 1.082 1.062 1.050 1.042

1.50 1.285 1.151 1.103 1.078 1.063 1.053 Dissimilar

1.75 1.346 1.186 1.127 1.097 1.078 1.066

2.00 1.414 1.225 1.155 1.118 1.095 1.080

2.25 1.487 1.267 1.185 1.142 1.115 1.096 Different

2.50 1.565 1.313 1.218 1.167 1.136 1.114

2.75 1.647 1.362 1.253 1.195 1.159 1.134

3.00 1.732 1.414 1.291 1.225 1.183 1.155 Very Different
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A.8.4 OLS Unit Space Interpretation and Error 

The result of a linear OLS derived CER is interpreted to be the mean of a normal distribution (that is, the 

error is assumed to be normally distributed about the CER line).  Since a normal distribution is symmetrical, 

the CER result can also be characterized as the median or the mode. 

In OLS, the cost (Y) variation is assumed to be independent of the magnitude of the cost.  In other words, the 

error distribution is assumed to be identical throughout the data range and the error term is additive to the 

equation.  It is given by 

 Equation A-60  OLS Error Distribution 

),( βxiii fY   

 

This may be mathematically correct, but it is not reasonable in cost estimating and is a big reason why many 

analysts will not use the OLS method.  For instance, if the CER predicts cost as a function of weight and the 

valid cost range is $500 to $1500, a fixed $100 (a result consistent with OLS) average error over that range is 

not appropriate.  It may be reasonable at the mid-range of the cost, but not at the low or high end.  In cost 

estimating, it may generally be assumed that the error is proportional rather than fixed.  In this case, an 

average error of 10% (rather than $100) would be used by most analysts to model the error of the CER.  A 

common rule of thumb is that the errors are believed to be proportional to the magnitude of the result (the 

dependent variable) if it ranges over more than one order of magnitude.  It is appropriate in such a case to 

assume the percentage errors of the item estimates will be identically distributed throughout the range of the 

data set. This is what a multiplicative error is supposed to represent.  

The uncertainty of a linear OLS derived CER may be modeled as a normal distribution where the CER result 

is always the mean of the distribution.  If the dataset is small (less than 30), then the student’s-t distribution 

should be used rather than the normal distribution. 

 

A.8.5 Calculating the Prediction Interval for Linear OLS CERs 

If the CER has the form: a + b*Var1 + c*Var2 + etc and it was derived using OLS, then it is acceptable to 

assume the CER produces the mean and the uncertainty distribution shape is the student t or normal.  To 

estimate the bounds of the distribution, calculate the prediction interval based upon the point estimate value 

for the input variables. 

Many statistical packages will calculate a lower and upper bound for the OLS generated CER based upon a 

specified value for the independent variable(s).  As illustrated in Table A-7, entering 25 lbs as the value for 

the point estimate weight and choosing to calculate the 80% prediction interval, the statistical package 

calculates the upper and lower bound.  In this case, these bounds are associated with the 10 and 90 percent 

probability levels. 

Table A-7  Statistic Package Prediction Interval for a Linear OLS CER 

 

UC1 = 30.15 + 1.049 * WarheadWt

WarheadWt 25.00

Confidence Level (%) 80.00%

Statistical Tool Result PE Multiplier

Low (10 percentile) 48.61 0.8624

Estimate (mean, median) 56.36 1.0000

High (90 percentile) 64.12 1.1376
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If the statistical package is unavailable, you can perform the prediction interval calculation manually as 

illustrated in Table A-8. 

Table A-8  Manual Calculation of Prediction Interval For A Linear OLS CER 

 

If the statistical package and/or the data to perform the calculation manually are unavailable, the analyst may 

estimate the bounds based upon the CER result, the Standard Error for the CER and an adjustment factor 

from Table A-6.  This simple procedure is illustrated in Table A-9.  As the results for the bounds show in 

Table A-9, the estimate without the adjustment underestimates the prediction interval range while the result 

that includes the adjustment slightly over estimates the range.  It is appropriate that a less accurate approach 

(using an adjustment factor) tends to overestimate the uncertainty. 

Table A-9  Manual ROM Estimate of a Prediction Interval for a Linear OLS CER 

 

If information about the CER is so sparse that even the standard error is unavailable then the analyst must 

resort to a subjective assessment of the CER uncertainty bounds.  The table of last resort subjective 

uncertainties (see Section 2.5.5) are considerably larger than the examples in this section. 

Observations UC1
Warhead 

Wt

System #1 31.00 6.00

System #2 46.00 8.00

System #3 36.00 9.00

System #4 48.00 13.00

System #5 40.00 14.00

System #6 50.00 17.00

System #7 55.00 20.00

System #8 54.00 27.00

System #9 58.00 30.00

System #10 67.00 31.00

Element Range Name Value Formula

Confidence Level (%) ConfLvl 80% Arbitrary, but 80% is consistent with calculating the 10/90 bounds.

Degrees of Freedom DegOfFreedom 8 Number of observations minus number of coefficients estimated.

Student t StudentT 1.397     TINV(1-ConfLvl,DegOfFreedom)

Std Error (SE) StdErr 5.126     See Appendix

# of Observations NumObs 10          

TBE Warhead Wgt TBEwgt 25.00     User Input

Ave Warhead Wgt AveWgt 17.50     AVERAGE(WarheadWtObservations)

Warhead Wgt Stdev Sx 8.73       STDEVP(WarheadWtObservations)

Delta to Bound Delta 7.76       StdErr*StudentT*SQRT(1+1/NumObs+((TBEwgt-AveWgt)/Sx) 2̂/NumObs)

Lower Bound 48.61     TBE-Delta

Point Estimate TBE 56.36     UC1 = 30.15 + 1.049 * WarheadWt

Upper Bound 64.12     TBE+Delta

Element Range Name
No 

Adjustment

With 

Adjustment
Formula

Standard Error SEE 5.126 5.126 From Statistical Package

Adjust for Sample Size & Relevance SEEAdjust 1.000 1.267 10 datapoints, source data different than project

Adjusted Standard Error SEEUnitSPace 5.126 6.495 SEE * SEEAdjust

Mean Mean 56.364 56.364

Lower Bound (10% level) 49.79 48.04 NORMINV(0.10,Mean,SEEUnitSpace)

Upper Bound (90% level) 62.93 64.69 NORMINV(0.90,Mean,SEEUnitSpace)

Lower Bound as % of PE 88.34% 85.23% Actual = 86.24

Upper Bound as % of PE 111.66% 114.77% Actual = 113.76
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All simulation packages will allow a normal distribution to be defined with the mean and some other 

probability level.  Since the normal is symmetrical, only one of the bounds plus the mean (the CER result) is 

required 

A.8.6 OLS Log Space Interpretation and Error 

CERs of the form Cost = a*Var1^b*Var2^c…* can be transformed into linear forms in log space.  In unit 

space, the CER result is closer to the median (not the mean) of a lognormal distribution.  A key result of this 

approach is that the error term is multiplicative, that is, it is proportional to the result of the CER.  A log-

error model is used when the error term is believed to follow a lognormal distribution.  This is a very 

common and intuitive assumption because the error in cost is usually skewed upward and bounded below by 

zero.  Log-linear models are in a very common and distinct class of non-linear relationships that are rendered 

linear when transformed to log-space. 

If the error term (i) is assumed to follow a normal distribution with a mean of 0 and variance 
2
 in log space 

(i.e., i ~ LN(0,
2
)), then the error can be measured by the following: 

Equation A-61  Log Space OLS Error Distribution 

)),(ln()ln()ln( βxiii fY 
 

where “ln” stands for natural logarithmic function.  The objective is then to minimize the sum of squared eis 

(i.e., ((ln(i))
2
) in log space.  In this case, the errors are assumed to be normally distributed around the CER 

(a straight line) in log space.  When transformed back to unit space, the mathematics show that: 

The unit space CER error term follows a lognormal distribution 

The CER result, while being the mean of a normal distribution in log space, is closer to the median in unit 

space.  If adjusting the CER result to be closer to the mean of the lognormal distribution is desired, please 

see the Appendix A.8.7. 

In summary, if the transformed function is linear in log space, then OLS can be applied in log space to derive 

a solution for .  If this function cannot be linearized in log space, then apply a non-linear regression 

technique to derive a solution.  See the pros and cons of log-error models in Reference 44. 

A.8.7 Adjusting a Log Space OLS CER Result to reflect the Unit Space Mean 

Although a least squares optimization in log space produces an unbiased estimate in log space, the estimate 

is no longer unbiased when transformed back to unit space (see Reference 1).  By unbiased, we mean the 

result is the mean of the uncertainty distribution.  The unit space CER by direct translation tends to 

underestimate the mean value of the original population.  Two distinct methods for adjusting the OLS log-

linear CER result to reflect the mean are presented.  As stated in Reference 15, neither of these adjustments 

is necessary to model the lognormal uncertainty. 

The most accurate approach is to make use of a correction factor based upon statistics of the CER.  A 

theoretical correction factor was first introduced by Neyman and Scott in 1960 and again by Goldberger in 

1968 to adjust the CER result to reflect the mean in unit space for the log-linear CERs (see Reference 1 and 

3).  A simplified form, commonly known as the PING factor (PF) is given by: 

Equation A-62  Factor to Adjust a Log Space CER Result to Reflect the Mean 

)
2

)-exp((1 

2
s

n

p
PF 

 

Where: 
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p = the total number of coefficients to be estimated 

s = standard error of estimate in log space 

n = the sample size 

This simplified form can be applied to log-linear CERs to correct the downward bias in unit space.  For a 

more accurate form of the factor and its detailed derivations, see Reference 44. 

By way of an example, consider the following CER to estimate propulsion costs: 

Y($K) = 1.618*MotorWt^0.6848 

Where 

n = 10 and SE = 0.25 and two coefficients (the intercept 1.618 and exponent 0.6848) 

the factor is: 

025.1

)
2

25.0
)

10

2
-exp((1 

2



 

 

If, for example, the motor weight is 200 lbs, the CER yields $60.91 K.  This is the median of the lognormal 

distribution.  If the mean is desired, then the CER result must be multiplied by 1.025.  The mean of the 

lognormal is therefore approximately $62.43 K. 

 

As indicated by Equation A-62, there are two terms involved in the adjustment: the first one is for adjusting 

the downward bias between the mean and the median (a transformation bias); the other is used to adjust the 

upward bias for estimating the median (a sampling bias).  It can be concluded that: 

 At a given sample size, the adjustment increases with standard error. 

 At a given standard error, the adjustment increases with the sample size. 

 The adjustment is always greater than 1 for p < n and standard error > 0. 

Table A-10 provides typical ranges for PING values illustrating that the adjustment increases with greater 

dispersion or larger sample size and decreases with more CER coefficients. 

Table A-10  Typical Log Space CER Adjustment Factor Ranges To Obtain the Mean 

 

A.8.8 Calculating the Prediction Interval for Log Linear OLS CERs 

A very common mistake is to assume OLS log-linear CERs produce the “mean” of the uncertainty 

distribution.  This is not true.  The back-transformed unit-space CER produces a value that is closer to the 

median.  The mathematics involved in adjusting the result to reflect the mean, while not complicated, does 

add a further layer of unnecessary calculations.  The details of how to calculate this adjustment are contained 

Factor to Convert Loglinear CER Median to Mean

2 Coefficient Loglinear CER 3 Coefficient Loglinear CER 4 Coefficient Loglinear CER

Dispersion      -->

(Adjusted SE) -->

Low 

(0.15)

Med 

(0.25)

High 

(0.35)

E High

(0.45)

Low 

(0.15)

Med 

(0.25)

High 

(0.35)

E High

(0.45)

Low 

(0.15)

Med 

(0.25)

High 

(0.35)

E High

(0.45)

Small Sample (5) 1.007 1.019 1.037 1.063 1.005 1.013 1.025 1.041 1.002 1.006 1.012 1.020

Medium Sample (10) 1.009 1.025 1.050 1.092 1.008 1.022 1.044 1.084 1.007 1.019 1.037 1.077

Large Sample (25) 1.010 1.029 1.058 1.098 1.010 1.028 1.055 1.093 1.009 1.027 1.053 1.089
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in Appendix A.8.7. However, this is not necessary to accurately define the distribution.  A lognormal 

distribution based upon the median and one other point will be identical to one modeled based upon the 

mean of the same distribution and one other point.  The simulation result will be identical. 

If the CER has the form: a*Var1^b * Var2^c * ε and was derived using OLS in log space (see Appendix 

A.7.2 for details), then the CER produces the median and the uncertainty distribution shape is lognormal.  To 

estimate the bounds of the lognormal distribution, calculate the prediction interval based upon the point 

estimate for the input variables. 

Many statistical packages will calculate a lower and upper bound for the OLS generated CER based upon a 

specified value for the independent variable(s).  As illustrated in Table A-11, entering 290 lbs as the value 

for the point estimate and choosing 80%, the statistical package calculates the upper and lower bound.  In 

this case, these bounds are associated with the 10 and 90 percent probability levels. 

Table A-11  Statistic Package Prediction Interval For A Log Linear OLS CER 

 

To perform this calculation manually in Excel, follow the steps in Table A-12.  Note that the assessment of 

fit occurs in fit space, in this case log space.  Consequently, the CER result and the 10/90 results from fit 

space need to be converted to unit space using the exponential function. 

UC1 = 1.618 * MotorWt  ̂0.6848

MotorWt 290.00

Confidence Level 80.00%

Statisitcal Tool Result PE Multiplier

Lower Bound 63.31 80.58%

Estimate 78.56 Median

Upper Bound 97.48 124.08%



 Joint Agency Cost Schedule Risk and Uncertainty Handbook 

  A-37 

Table A-12  Manual Calculation of Prediction Interval for a Log Linear OLS CER 

 

If the number of observations (and degrees of freedom) is not known, the upper and lower bound can be 

estimated using the normal distribution similar to the example shown in Table A-13.  Note that the upper 

and lower bounds are not symmetrical about the mean (CER result).  Lognormal rather than normal is a more 

appropriate distribution to use in this case. 

As the results for the bounds show in Table A-13, the ROM estimate without the adjustment underestimates 

the prediction interval range while the ROM approach that includes the adjustment slightly overestimates the 

range.  It is appropriate that a less accurate approach tends to overestimate the uncertainty.  

Table A-13  Manual ROM Estimate of a Prediction Interval For A Linear OLS CER 

 

If even the standard error is unavailable then the analyst must resort to a subjective assessment of the CER 

uncertainty bounds (however, lognormal should be used).  Last resort subjective uncertainties (see Section 

2.5.5) are considerably larger than the example in this section. 

LN(MotorWt) MotorWt

System #1 4.499809670 90

System #2 4.718498871 112

System #3 4.867534450 130

System #4 5.135798437 170

System #5 5.272999559 195

System #6 5.347107531 210

System #7 5.416100402 225

System #8 5.669880923 290

System #9 5.768320996 320

System #10 5.828945618 340

Element Range Name Value Formula

Confidence Level (%) ConfLvl 80% Arbitrary, but 80% is consistent with calculating the 10/90 bounds.

Degrees of Freedom DegOfFreedom 8 Number of observations minus number of coefficients estimated.

Student t StudentT 1.397      TINV(1-ConfLvl,DegOfFreedom)

Std Error (SE) StdErr 0.1413     See Appendix A

# of Observations NumObs 10           

TBE Motor Wgt TBEwgt 5.67        User Input LN(290)

Ave Motor Wgt AveWgt 5.25        AVERAGE(MotorWtObservations)

Motor Wgt Stdev Sx 0.43        STDEVP(MotorWtObservations)

Delta to Bound Delta 0.22        StdErr*StudentT*SQRT(1+1/NumObs+((TBEwgt-AveWgt)/Sx) 2̂/NumObs)

Lower Bound LowerBound 4.15        TBE-Delta

Point Estimate TBELogSpace 4.36         UC1 = 1.618 * MotorWt  ̂0.6848

Upper Bound UpperBound 4.58        TBE+Delta

Lower Bound 63.31      EXP(LowerBound)

Point Estimate TBE 78.56      EXP(TBELogSpace)

Upper Bound 97.48      EXP(UpperBound)

Element Range Name
No 

Adjustment

With 

Adjustment
Formula

Standard Error (Fit Space) SEEFitSpace 0.141 0.141 From Statistical Package

Adjust for Sample Size & Relevance SEEAdjust 1.000 1.267 10 datapoints, source data different than project

Adjusted Standard Error (Fit Space) SEEFitSpaceAdj 0.141 0.179 SEE * SEEAdjust

Mean (Fit Space) MeanFitSpace 4.364 4.364

Mean (Unit Space) Mean 78.558 78.558

Lower Bound (10% level) 65.55 62.45 EXP(NORMINV(0.10,MeanFitSpace,SEEFitSpaceAdj))

Upper Bound (90% level) 94.15 98.82 EXP(NORMINV(0.90,MeanFitSpace,SEEFitSpaceAdj))

Lower Bound as % of PE 83.44% 79.50% Actual = 80.59

Upper Bound as % of PE 119.85% 125.79% Actual = 124.08
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All simulation packages will allow a lognormal distribution to be defined with the mean and some other 

probability level.  A lognormal can be uniquely defined from two points such as one of the bounds plus the 

median (the CER result). 

A.8.9 MUPE Interpretation and Error 

The result of a MUPE derived CER is interpreted to be the mean of the error distribution regardless of the 

functional form of the CER.  Since MUPE CERs estimates the mean in unit space, the roll-up elements in an 

all-MUPE cost estimate will be the expected value of the sum of the elements below.  This is not true of 

CERs developed using uncorrected (see Appendix A.7.2) OLS in log space (and may or may not be true for 

other regression types). 

Note that the standard error of the estimate (also commonly termed multiplicative error) can be used as an 

estimate of the standard deviation () of the error term.  For instance, if the SEE is 20% for a MUPE CER, it 

can be interpreted that the CER has plus/minus 20% estimating error (for one standard deviation) at the 

center of the database. 

A more rigorous estimate of the MUPE prediction interval is possible for linear MUPE CERs (Reference 

51). The general specification for a MUPE CER is stated as: 

Equation A-63  MUPE Prediction Interval Specification 

iii fY ),( βX       for i = 1, …, n 

where: 

 n = sample size 

 Yi = observed cost of the i
th

 data point, i = 1 to n 

 f (Xi,) = the value of the hypothesized equation at the i
th

 data point 

  = vector of coefficients to be estimated by the regression equation 

 Xi = vector of cost driver variables at the i
th

 data point 

 i = error term with mean of 1 and variance 
2
 

Statistical inferences can be made for the regression equation if the normality assumption is further applied 

to the error term ().  If the hypothesized equation is a simple linear function: 

f (Xi,) =  + Xi for i = 1, …, n 

The (1-)% prediction interval (PI) for a future observation Y when X is at xo (i.e., 0ŷ ) is then given by 

Equation A-64  MUPE Prediction Interval For a Future Observation 
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where: 



 Joint Agency Cost Schedule Risk and Uncertainty Handbook 

  A-39 

wi is the weighting factor for the i
th

 data point and wi = 1/(fi*fi) 

fi denotes the predicted value of the i
th

 data point 

SE is CER’s standard error of estimate 
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df is the degrees of freedom 

t(/2,df) is the upper /2 cut-off point for a t-distribution with “df” degrees of freedom 

Adj. SE is the adjusted standard error for PI 

Swx is the weighted sample standard deviation of the independent variable x. It is the sample standard 

deviation of the x variable evaluated in the fit space. 

If the hypothesized equation is a simple factor equation:  f (Xi,) = Xi for i = 1, …, n 

The (1-)% prediction interval (PI) for a future observation Y when X is at xo (i.e., 0ŷ ) is then simplified to 

the following formula: 

Equation A-65  MUPE Prediction Interval For a Future Observation For a Factor CER 

).*1(ˆ

1
1**1ˆ

ˆ)
1

1(**ˆ

)(1
**ˆ

)1,2/(0

)1,2/(0

2

0)1,2/(0

2

0

0

)1,2/(0

SEAdjty

n
SEty

y
n

SEty

SS

x

w
SEty

n

n

n

wxx

n






































 

A.8.10 MUPE SEE 

For MUPE equations, the SEE measure is typically stated in percentage terms and is provided below. 

Equation A-66  Standard Error of the Estimate for MUPE CERs 
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Note: Since SEE measures the average amount of variation between the sample data and the regression 

equation, the smaller the value of SEE, the tighter the equation (i.e., the more precise the prediction).  

MUPE’s SEE is commonly termed “standard percent error” (SPE). 
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A.8.11 Calculating the Prediction Interval for MUPE CERs 

Regardless of the CER form, if it was derived using the MUPE method, it can be assumed that the CER 

produces the mean.  To estimate the bounds of the normal distribution for a linear MUPE CER, calculate the 

prediction interval based upon the Technical Baseline point estimate for the input variables.  Details on a 

closed form solution are provided in Appendix A.8.9. 

A.8.12 ZPB/MPE (or ZMPE Method) Interpretation and Error 

ZMPE also delivers zero sample bias, i.e., the average of the proportional errors is zero.  The ZMPE 

technique does not yield the traditional statistical properties suitable for characterizing the meaning of the 

CER result and its error that are customary with OLS and LOLS regressions.  Also, the PI for the ZMPE 

equation has not been validated yet. For these reasons, many organizations prefer OLS or MUPE over the 

ZMPE process (Reference 57).  However, ZMPE has been selected as a technique of choice by several 

organizations. 

ZMPE makes no assumptions about the nature of the error distribution, so any type of distribution can be 

used.  Some analysts prefer using lognormal to model the CER error distribution.  To add a little rigor to the 

process, one could perform a distribution fitting process to identify the appropriate curve.  ZMPE process is 

blind to the shape of the distribution, and simply seeks fit parameters that minimize the sum of the squared 

percent errors between the data points and the CER, with the added constraint that the bias be zero. 

A.8.13 Iterative Regression Interpretation and Error 

There have been various attempts to generate suitable statistics from iterative regression analysis.  The 

Bootstrap method (see Reference 50) is one approach.  However, the reference did not provide an error 

assessment of the Bootstrap prediction intervals.  The only claim is that the Bootstrap PIs were “close” to the 

PIs generated by the OLS method for a simple linear CER with 10 data points.  

A.9 GOODNESS OF FIT STATISTICS 

A.9.1 Overview 

Goodness of fit statistics measure how well the fitted distribution compares to the input data.  What most 

analysts forget is that there are a variety of ways to define the input data.  Determining how the cumulative 

probability will be assigned to the input data will have a profound impact on the fit results when only a few 

data points are available.  Section 2.4.3.2 covers this topic in detail. 

When fitting distributions to the input data, it is not enough to find the best fit that minimizes the error of 

some statistical metric to identify the best fit.  The best fit may not be a statistically significant fit.  So in 

addition to finding the best fit, there is a need to perform a goodness-of-fit test.  Guidance on what 

combination of statistics to use is provided in Section 2.4.3.5. 

A.9.2 Kolmogorov-Smirnov (K-S) 

The K-S test compares the sample CDF with the fitted CDF and computes the maximum vertical distance 

between them. An attractive feature of this test is that the distribution of the K-S test statistic itself does not 

depend on the underlying cumulative distribution function being tested. Another advantage is that it is an 

exact test (the chi-squared goodness-of-fit test depends on an adequate sample size for the approximations to 

be valid). Despite these advantages, the K-S test has several important limitations:  

 It only applies to continuous distributions 

 It tends to be more sensitive near the center of the distribution than at the tails 

Due to the first two limitations, many analysts prefer to use the Anderson-Darling goodness-of-fit test.  
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A.9.3 Anderson-Darling (A-D) 

The A-D test measures total area between the sample and the fit CDF.  Weightings can be used to focus on 

the fit in the tails. The Anderson-Darling test makes use of the specific distribution in calculating critical 

values. This has the advantage of allowing a more sensitive test and the disadvantage that critical values 

must be calculated for each distribution. Currently, tables of critical values are available for the normal, 

lognormal, exponential, Weibull, extreme value type I, and logistic distributions. 

The basic test statistic for a given sample {X1, X2, …, Xn} (in ascending order) is listed below: 

Equation A-67  Anderson Darling Goodness of Fit Test 

Area between the curves = A
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 = – n – S 
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,  

F is the cumulative distribution function of the fitted distribution, 

Xi’s are the ordered data, and 

n is the sample size 

Like the K-S statistic, the lower the resulting statistic, the better the fit. 

A.9.4   K-S and A-D Test for Statistical Significance 

One of the more confusing aspects of the K-S and A-D tests are their applicability to distribution fitting.  If 

either the form of the distribution or the parameters of a distribution are determined from the data, then the 

basic formulas for calculating a p-value (confidence level that the fit is statistically significant) need to be 

adjusted.  In such cases, Monte Carlo or other methods (@RISK uses a bootstrap method) may be required.  

Tables have been prepared for some cases. Details for the required modifications to the test statistic and for 

the critical values for normal, lognormal, exponential, extreme-value, Weibull, gamma, logistic, cauchy, and 

von Mises distributions can be found in Reference 8.  Neither beta nor triangular is addressed in Reference 

8 and neither Crystal Ball nor @RISK report a p-value for triangular, beta or other distributions. 

The Crystal Ball Help manual states: P-values are also displayed for the following continuous distributions 

when the Anderson-Darling or Kolmogorov-Smirnov methods are used: normal, exponential, logistic, 

maximum extreme, minimum extreme, uniform, gamma, Weibull, and lognormal. P-values for the other 

distributions are under development.  Since p-values for Anderson-Darling and Kolmogorov-Smirnov 

statistics are influenced by the number of data points being fitted, an adjustment formula is used to arrive at 

the asymptotic Anderson-Darling and Kolmogorov-Smirnov statistic for a given sample size. The quality of 

fitted parameters and the calculated p-value deteriorates as the sample size decreases. Currently, Crystal Ball 

needs at least 15 data points for fitting all the distributions. 

@RISK uses a different method (bootstrap, see the @RISK user’s manual for details) to estimate p-values 

for the K-S and A-D test.  Just like with Crystal Ball, the quality of fitted parameters and the calculated p-

value deteriorates as the sample size decreases.  ACEIT (CO$TAT) does not currently report the K-S or A-D 

statistic, but will in a future release. 

What does this mean?  It means that despite the usefulness of K-S and A-D as goodness-of-fit tests their p-

values have limited utility when comparing statistical significance between distribution types.  Furthermore, 

both Crystal Ball and @RISK warn the user that the quality of the K-S and A-D results deteriorates as the 

sample size gets smaller.  That does not deter a large segment of our community from using these tests. 



 Joint Agency Cost Schedule Risk and Uncertainty Handbook 

  A-42 

A.9.5 Chi-squared Test  

For the chi-squared test, the sample is divided into equal probability bins based upon the fitted curve.  It 

counts the number of sample points that fall in the bins and compares the deviation between the number of 

observations in each bin and the curve’s prediction of how many observations should land in each bin.  The 

greater the deviation, the more likely we are correct in rejecting the fitted curve for prediction purposes.  

The chi-squared test is based upon dividing the sample into a number of bins.  Table A-14 presents five 

popular options for determining the number of bins to use.  For each bin, the following formula is evaluated 

and then summed to calculate the chi-squared statistic: 

Equation A-68  Chi-squared Goodness of Fit Statistic 
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where: 

k is the number of bins,  

SampleFreq(i) is the actual number of observations in the i
th

 bin (i = 1,…,k), and  

ExpectedFreq(i) is the expected number of observations falling in the i
th

 bin according to the fitted 

distribution. 

The following sequence is used to evaluate the formula: 

 Select the number of equal probability bins 

 Calculate the cumulative probability level for each bin 

 Estimate the bin boundary values using the fitted distribution 

 Count the number of data points (SampleFreq) falling in each bin 

 Calculate the expected number of observations (ExpectedFreq) per bin (i.e., number of sample 

observations/number of bins) 

 Calculate the chi-squared statistic 

 Calculate the p-value for the Chi^ test (a one-tailed test) and compare to the level of significance to 

determine the statistical significance of the fit 

Table A-14 identifies five popular methods for estimating the optimum bin count.  Excel formulations are 

also provided.  The Mann-Wald method divided by 2 (discussed in detail in Reference 8) is used by Crystal 

Ball and CO$TAT to determine the number of equal probability bins for the chi-squared goodness of fit test 

(see Section 2.4.3.5).  The general form and the 5% significance level form is provided.  
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Table A-14  Formulas for Choosing Histogram Bin Count 

   

where, 

n is the sample size 

Φ 
-1

 is the inverse standard normal distribution 

α is the level of confidence for the chi-squared test 

s is the sample standard deviation 

IQR is the Inter-Quartile Range of the sample set Y 

A.9.6 Akaike Information Criterion (AIC) 

The AIC is used to measure the relative goodness-of-fit for a statistical model. AIC is founded in information 

theory, offering a relative measure of the information lost when a given model is used to describe reality. 

Some information will almost always be lost due to using a candidate model to represent the “true” model. 

Among the candidate models, we want to select the one that minimizes the information loss.  

This criterion was developed by Hirotsugu Akaike, under the name of "an information criterion" (AIC). And 

it was first published by Akaike in 1974 (see Reference 4).  In the general case, the AIC is given by: 

Equation A-69  Akaike Information Criterion (AIC) 

– 2ln(L) + 2p = n*ln(SSE/n) + 2p 

Where, 

p is the number of parameters estimated in the statistical model 

n is the sample size 

SSE is the sum of squared deviations between the actual observations and the predicted values from 

an estimating model 

L is the maximized value of the likelihood function for the estimated model.  

The selection criterion is as follows: given a set of candidate models, the model which has the smallest AIC 

value, is the preferred model. 
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When fitting models to a data set, we can increase the likelihood by adding more parameters, but doing so 

may result in over-fitting. Based upon the formula above, the AIC is driven by the goodness-of-fit measure; 

meanwhile, it also penalizes over-fitting. In other words, the more estimated parameters there are in the 

model, the larger the AIC becomes at a given goodness-of-fit measure. For example, if both a lognormal 

distribution and a beta distribution are equally good candidates for fitting a particular data set, the lognormal 

distribution is preferable because it has only two estimated parameters while the beta has four. 

In the actual implementation, we first select a set of candidate models for a given data set. We then compute 

these models’ respective AIC values and we find the model with the smallest AIC. Additionally, we can use 

the statistic below to indicate the relative probability that the ith model minimizes the (estimated) 

information loss: 

Equation A-70  AIC Statistic to Indicate Relative Probability That ith Model Minimizes Info Loss 

exp((AICmin−AICi)/2) 

for i = 1, 2, …, m 

where, 

 m is the total number of candidate models 

AIC1, AIC2, …, AICm are used to denote their respective AIC values 

AICmin represents the minimum of these values.  

These numbers (i.e., exp((AICmin−AICi)/2)) can be used as the weighting factors for developing a weighted 

model if they are relatively large. Let us use the following example to explain the process. If there are three 

candidate models for a particular data set, with AIC values 50, 52, and 60. The first model is the best one 

because its AIC value is the smallest among the three. The second model is exp((50−52)/2) = 0.368 times as 

probable as the first model to minimize the information loss, while the third model is exp((50−60)/2) = 0.007 

times as probable as the first model to minimize the information loss. In this case, we would eliminate the 

third model from further consideration. We could also take a weighted average of the first two models, with 

weights 1 and 0.368, respectively, and then do statistical inference based on the weighted model. (See 

Reference 61 for details.) Alternatively, we could gather more data to distinguish between the first two 

models. 

Note that AIC values provide a means for model selection, but AIC does not tell how well a model fits the 

data in an absolute sense. If all the candidate models fit poorly, AIC will not give any warning of that. 

A.9.7 Bayesian information criterion (BIC) 

The BIC or Schwarz criterion (also SBC, SBIC) was developed by Gideon E. Schwarz in 1978 (see 

Reference 6). The BIC is also used for model selection among a finite set of models and is closely related to 

the AIC. Mathematically, it is given by 

Equation A-71  Bayesian information criterion (BIC) 

– 2ln(L) + p*ln(n) = n*ln(SSE/n) + p*ln(n)  

 

Just like the AIC, the BIC statistic is also derived from the log-likelihood function
14

 as shown by the formula 

above. Both statistics take into account the number of estimated parameters of the fitted distribution. 

However, the BIC penalizes more strongly than AIC for the number of estimated parameters. 

                                                 
14

 Log-likelihood function:  A likelihood function, by definition, is the joint probability density function of a random sample. 



 Joint Agency Cost Schedule Risk and Uncertainty Handbook 

  A-45 

Note that Akaike was so impressed with Schwarz's Bayesian formula that he developed his own Bayesian 

formula, which is now referred to as “Akaike's Bayesian Information Criterion” (ABIC). (See Reference 7 

for details.) 

The general recommendation of @RISK Version 6 is to use the AIC or BIC for selecting a fit result unless 

there is a specific reason for not doing so. 

A.10 RISK SIMULATION SAMPLING METHODS 

A.10.1 Monte Carlo 

The Monte Carlo method has been successfully used in scientific applications for at least 65 years. It is a 

problem solving technique used to approximate the probability of certain outcomes by running multiple trial 

runs, called simulations, using random variables.  Credit for inventing the Monte Carlo method often goes to 

Stanislaw Ulam, a Polish born mathematician who worked for John von Neumann on the United States’ 

Manhattan Project during World War II. Ulam is primarily known for designing the hydrogen bomb with 

Edward Teller in 1951. He invented the Monte Carlo method in 1946 while pondering the probabilities of 

winning a card game of solitaire.  Ulam and Metropolis published the first paper on the Monte Carlo method 

in 1949 (Reference 1). 

A.10.2 Latin Hypercube  

The Latin Hypercube technique is a modification of the Monte Carlo sampling process.  The concept was 

developed to ensure that the entire range of each variable is sampled. Latin Hypercube sampling (also known 

as stratified sampling) has been shown to require fewer model iterations to approximate the desired variable 

distribution to the same level of accuracy as the Monte Carlo method.  It works as follows: 

 The distribution is divided into segments of equal probability 

 Segments are randomly selected for sampling 

 All segments are sampled before a segment is sampled again 

 Each sample is drawn from its segment by uniform random sampling 

In Figure A-11, the triangular cumulative distribution function has been divided into 10 intervals of equal 

probability (i.e. the area of each interval is the same) and a sample is randomly selected from each interval. 

Once a sample is taken from a particular interval, this interval is not sampled again until all segments have 

been sampled. The triangular distribution to the left illustrates how Crystal Ball made 10 random selections.  

Note that the tails of the distribution are not sampled.  But in the triangle to the right, 10 random samples 

using the Latin Hypercube method does sample more of the distribution.  Tools like @RISK and ACE 

automatically set the number of segments to equal the number of samples (also called trials or iterations).  

Tools like Crystal Ball allow the user to specify the number of segments independent of the number of 

samples taken.  This handbook recommends that segments be set to the same number as set for trials. 
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Figure A-11  Compare Monte Carlo to Latin Hypercube 

A.10.3 Correlated Random Samples  

Drawing random samples from a random number generator is one thing, generating correlation across two or 

more random variables is another.  There is a lot of literature on the topic, including Reference 20.  Several 

tools (e.g., Crystal Ball, @RISK) apply a user defined correlation matrix as rank order correlation.  Others 

(e.g., ACE) induce Pearson product moment (PPM) correlation.  Reference 20 discusses how to apply a 

PPM correlation matrix in detail.  A quick synopsis of what is involved would go something like this:   Let 

us assume a total cost is the sum of many uncertain throughputs defined by different uncertainty 

distributions.  Let's further assume that the distributions need to be correlated.  The first step is to apply 

something called the "Cholesky’s decomposition method" to a set of independent standard normal random 

variables to construct correlated standard normal distributions. These correlated normal random variables are 

then transformed into correlated uniform random variables based upon their respective ranks (not to be 

confused with rank correlation. The inverse of the user-defined distribution are then applied to invert these 

uniform draws into draws resembling the user-defined distributions. The final step is to iterate on the 

Cholesky’s factors to achieve the desired correlations among the WBS elements.  This way, both the user-

defined distributions and the correlation structure are preserved.  The details of this process are beyond the 

scope of this handbook. 

A.11 CORRELATION 

A.11.1 Overview 

An important consideration in risk and uncertainty analysis is to adequately account for the relationships 

between the cost elements during a risk simulation.  This interrelationship between the WBS elements is 

commonly known as "dependency” or “correlation.”  For example, data from a number of similar projects, or 

expert opinion may indicate that as the cost of WBS element A increases, the cost of WBS element B also 

tends to increase (positive correlation); and perhaps the cost of WBS element F is expected to decrease 

(negative correlation).  Often, it is easier to defend the application of correlation between uncertain input 

variables that are driving the results of one or more WBS elements.  It is also important to note that 

correlation between any two random variables does not prove or disapprove a cause-and-effect relationship 

between them. 

Correlation is applied at the lowest levels of the WBS, where CER uncertainty is defined. It is also applied 

across input variables.  Correlation does not impact the distributions it is applied to; it impacts the parent 

level of the WBS or anywhere two or more correlated variables are combined.  The specification of 

correlation within an uncertainty assessment will magnify the uncertainty impact at the aggregate level as 
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child WBS elements are forced to move together. If the child element uncertainty distributions are left to be 

sampled independently of one another, then the high sample on one distribution can be canceled by a 

simultaneous low on another element.  A common reason for very steep S-curves at the parent levels in 

estimates with many elements is a lack of correlation.  Positive correlation causes elements to move in the 

same direction (tending to magnify the uncertainty effect), while negative correlation causes elements to 

move opposite to each other (tending to cancel each other).  Care should be taken when a random variable 

occurs in the denominator of an equation as opposed to the numerator.  In such cases movement of the 

variable has the opposite impact than in the cases of the variable is in the numerator.  As the denominator 

variable gets larger, the overall value of the equation get smaller rather than larger.  As such, the movement 

of a variable in the denominator positively correlated to one in the numerator will tend have the opposite 

effect of the movement of the numerator.  This results in the combined effect of the movement of the two 

variables tending to cancel each other out.  That is, if the denominator proportionality increases in line with 

the increased value of the numerator, the overall ratio (equation value) remains constant. 

Implementing positive correlation across the risk and uncertainty distributions will result in broader 

dispersion (increased variance) of the uncertainty result at the aggregate or parent levels in the WBS.  The 

impact can be significant.  There have been many papers on the topic, such as Reference 20, 21, 22, 26, 27 

and 31.  Reference 32 provides reasons why the correlation between weight variables should not be 

calculated from the same data set used to develop a CER. 

A.11.2 Functional Correlation 

Correlation of the risk distributions in a cost model often will be already captured through the mathematical 

relationships within the cost model.  For instance, if both the costs of Data and SEPM are modeled by using 

certain factors times the cost of the Prime Mission Product (PMP), then Data and SEPM will be positively 

correlated in the simulation.  In this situation, as PMP changes in the risk simulation, the costs of Data and 

SEPM will change in the same direction accordingly; therefore, they are positively correlated.  Beware of 

unintended correlation.  For example, if the same uncertainty labor rate is used across a number of elements, 

those elements will be highly, positively correlated.  To control this situation, separate uncertain labor rates 

should be created and the correlation between them controlled. 

A.11.3 Applied Correlation 

Applied correlations are those specified by the user and implemented within a model.  Before specifying any 

additional correlation among the WBS elements, it is recommended that the user measure the correlations 

already present in the cost risk model.  Correlations (or dependencies) between the uncertainties of WBS 

CER uncertainties are generally determined subjectively.  There have been many studies attempting to find 

objective evidence for correlations. However, these correlations should not be estimated by the cost-vs.-cost 

correlations from the same historical database from which the CERs are derived.  In other words, strong 

correlations between cost elements in a database should not be mistaken as evidence that residuals or 

percentage errors of the CERs derived from the same database are correlated.  See Reference 26, 27 and 32 

for details. 

A.11.4 Measuring Correlation 

The two primary methods for measuring correlation are Pearson’s Product Moment and Spearman Rank 

order.  The appropriateness of these two types in the context of cost estimating is discussed in References 

20, 21 and 22.  Crystal Ball and @RISK employ Spearman Rank and ACE employs a variation on the 

Pearson Product Moment method recommended in Reference 31.  In practice, there is little or no impact on 

the total cost results when the only difference is the correlation type applied.  The results of the example 

model in this handbook demonstrate this. 
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A.11.5 Pearson’s Correlation Coefficient 

Pearson's correlation coefficient between two sets of numbers is a measure of the linear association between 

these two sets.  It measures the degree to which two sets of data move together in a linear manner.  A high 

positive correlation indicates a strong direct linear movement and a high negative correlation represents a 

strong inverse relationship.  The correlation ranges between –1.0 and +1.0, where -1 indicates a perfect 

inverse relationship, 0 indicates no correlation, and +1 indicates a perfect positive relationship.  In 

probability theory and statistics, Pearson’s correlation coefficient indicates both strength and direction of the 

linear relationship between two variables.  Pearson’s correlation coefficient is important in cost-risk analysis 

because it appears explicitly in the formula for the total-cost standard deviation and therefore impacts the 

spread of the total-cost distribution. 

By definition, Pearson's correlation coefficient (Pearson’s r) calculated between two sets of numbers {xi} and 

{yi} is given by 

Equation A-72  Pearson’s Correlation Coefficient 
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Where x  and y  are the means of {xi} and {yi}, respectively, and n is the sample size. 

Pearson Product Moment Correlation coefficient (PPMC) is the most widely used method for determining 

correlation.  It is a measurement of the linear relationship between two related variables.  Figure A-12 

demonstrates a different aspect of the PPMC, specifically: 

 First row demonstrates how the strength relates to the dispersion  

 Second row demonstrates how the strength does not represent the slope of the relationship 

 Third row demonstrates how the coefficient alone could be an insufficient measurement of the 

relationship 

 

Figure A-12  PPMC Result For Various Patterns of Data
15
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 Image was put into the public domain by Wikimedia Commons. 
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A.11.6 Spearman’s Rank Correlation Coefficient 

Spearman’s rank order correlation is used in nonparametric inferences to determine if two random variables 

are independently distributed.  Therefore, no assumptions are made about the underlying distributions.  

When Spearman’s correlation coefficient is significantly different from zero, it can be interpreted as an 

association between two variables, just like the ordinary Pearson product-moment correlation.  However, the 

Spearman’s rank correlation coefficients do not appear explicitly in the formula for the total-cost standard 

deviation.  Therefore, their impact upon the spread of the total-cost distribution is not generally understood. 

The Spearman Rank Order correlation is computed from the ranking of the elements in the ordered pairs, as 

opposed to the actual values.  If some of the ranks are identical, all of the ties are assigned the average of the 

ranks that they would have had if their values had been slightly different. In this situation, some of the ranks 

could be partial integers.  In all cases the sum of all assigned ranks will be the same as the sum of the 

integers from 1 to n where n represents the number of elements, namely n(n + 1)/2. 

To calculate the Spearman Rank correlation coefficient, let Ri be the rank of xi among the other x’s, let Si be 

the rank of yi among the other y’s, and let ties be assigned the appropriate average as described above. Then 

the rank-order correlation coefficient is defined to be the linear correlation coefficient of the ranks, and is 

given below: 

Equation A-73  Spearman Rank Correlation Coefficient 
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If there are no ties in the ranking, then the equation can be reduced to: 

Equation A-74  Spearman Rank Correlation Coefficient When No Ties in the Ranking 
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Where: 

d = difference between the paired ranks 

n = number of paired ranks 

A.11.7 Comparing Spearman Rank to Pearson Product Moment 

Crystal Ball and @RISK employ “Spearman Rank” correlation.  Excel’s CORREL measures Pearson 

Product-Moment.  While there have been several papers denouncing rank order correlation as inappropriate 

for cost analysis (see References 20 and 21), it is rare to see notable differences in results between the two 

approaches (see References 31, 36, 38, 39, 42).  As an example, the resulting correlation matrices from the 

missile example as generated by Crystal Ball (which uses Spearman Rank) and ACE (which uses Pearson 

Product-Moment) are almost identical as illustrated in Table A-15.  The shaded cells are the only ones where 

the correlation coefficient difference by more than 0.02 but less than 0.03. 
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Table A-15  Measured Pearson Product Moment Correlations 

 

A.12 ALTERNATIVE ALLOCATION METHODS 

A.12.1 Adjusting Standard Deviation for Correlation 

Section 3.6.3 described a very simple allocation method where standard deviation was used as the basis for 

allocating the difference between a parent’s result at a specific probability to the sum of its children at the 

same probability (adjusting the percentile, not the point estimate).  An alternative is to use correlation 

adjusted standard deviations.  Lower-level variances (standard deviation squared) will not sum to the parent 

level variance unless the impact of correlation is captured.  To obtain the correct variance sum, the element 

variances need to be adjusted for correlation using Equation 3-1.  The process to perform this adjustment is 

illustrated in Figure A-13.  The Excel function to make this calculation in cell K9 is 

I9*MMULT(Q9:Y9,$I$9:$I$17). 
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CB Resultant Pearson Product Moment Correlation

Missile Sys 1.00 0.90 0.75 0.72 0.75 0.73 0.46 0.48 0.61 0.74 0.73 0.61

EMD 1.00 0.82 0.80 0.57 0.81 0.56 0.58 0.49 0.81 0.81 0.48

AV EMD 1.00 1.00 0.48 0.42 0.30 0.34 0.37 0.97 0.97 0.37

DesignDevEMD 1.00 0.42 0.40 0.29 0.33 0.33 0.97 0.97 0.32

Proto EMD 1.00 0.45 0.21 0.23 0.78 0.47 0.47 0.78

SW EMD 1.00 0.29 0.33 0.35 0.40 0.40 0.34

SysEng EMD 1.00 0.67 0.29 0.33 0.33 0.29

PM EMD 1.00 0.29 0.37 0.36 0.29

STE EMD 1.00 0.40 0.40 0.72

Trg EMD 1.00 0.96 0.40

Data_EMD 1.00 0.39

PSE_EMD 1.00
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ACE Resultant Pearson Product Moment Correlation

Missile Sys 1.00 0.91 0.75 0.72 0.75 0.72 0.45 0.47 0.61 0.74 0.74 0.61

EMD 1.00 0.82 0.80 0.56 0.80 0.55 0.57 0.48 0.81 0.81 0.47

AV EMD 1.00 1.00 0.47 0.40 0.30 0.33 0.36 0.97 0.97 0.36

DesignDevEMD 1.00 0.41 0.38 0.29 0.32 0.31 0.97 0.97 0.31

Proto EMD 1.00 0.44 0.20 0.22 0.77 0.46 0.46 0.78

SW EMD 1.00 0.27 0.32 0.34 0.38 0.39 0.34

SysEng EMD 1.00 0.65 0.28 0.34 0.34 0.28

PM EMD 1.00 0.28 0.36 0.36 0.28

STE EMD 1.00 0.39 0.39 0.72

Trg EMD 1.00 0.96 0.38

Data_EMD 1.00 0.39

PSE_EMD 1.00
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Figure A-13  Adjusting Standard Deviation for Correlation 

The correlation matrix is obtained from extracting the trial data and measuring the correlation between 

elements.  The process defined in Section 3.6.3 is the same, but using the adjusted standard deviations. 

Alternative approaches to risk dollar allocation are discussed in detail in Reference 56. 

A.12.2 Needs-Based Allocation 

The Needs-Based Allocation method is an alternative to the standard deviation based allocation method 

described in Section 3.6.  Details of this approach can be found in Reference 54 and they are summarized 

here.  Key assumptions and goals of this method include: 

 Allocation of risk dollars
16

 to project elements must put risk dollars where they are “needed” 

 Need of any WBS element is defined as the probability it will overrun its point estimate 

 Need is calculated as the difference between the selected percentile and the point estimate 

 An element that has preponderance of probability below its point estimate (such as a left skewed 

distribution) has little or no need 

 Need is adjusted by inter element correlation in the same way as Equation 3-1, but instead of 

variation, the correlation adjustment is applied to need as follows: 

o Risk dollars at the parent level are prorated (allocated) to the child elements based on need 

o WBS elements having more cost uncertainty shall be allocated more risk dollars 

o Element uncertainty used to allocate risk dollars shall capture the impact of inter-element 

correlation  

o Risk-dollar allocation shall not result in an element’s estimate being reduced below its point 

estimate 

Reference 54 discusses a variation of the method identified in in Section 3.6.  Instead of adjusting the 

selected percentile (as defined in Section 3.6), the author discusses the issues arising when prorating risk 

dollars relative to the point estimate.  The key complaint is that the method in Section 3.6 will blindly reduce 

an element’s cost below the point estimate.  This is a valid point, but others may view this as a strength 

rather than a weakness if the intent is to fund all elements to roughly the same percentile.  Business rules 

such as these need to be considered and adopted or rejected as agencies deem fit. 

                                                 
16

 Note that we have retained the term “risk dollars” rather than replace it with probability adjustment (PA) dollars in order to 

remain consistent with the language Dr. Book used in the many publications he authored on the Needs Method. 
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The needs method is summarized as follows: 

 Compute the need for each WBS element, Needj (minimum need is zero) 

 Compute correlation between risk dollar requirements of elements i and j, Corrij 

 Compute Total Need Base  

Equation A-75  Need Based Calculation 

Total Need Base =   


n

j

n

i 11

 Corrij Needi Needj 

 Compute the Correlation Adjusted Need For Each Element 

Equation A-76  Correlation Adjusted Needj 




n

i

jiij NeedNeedCorr
1

 

 Risk dollars are prorated to child elements based upon the correlated adjusted need per element 

divided by the total base need.  Need is used instead of standard deviation to prorate the risk dollars. 

While the reference does not address it, the algorithm has to account for child elements where the point 

estimate is greater than the desired probability level.  Presumably, the difference between the point estimate 

and the desired probability level (a negative number in this case) is subtracted from the parent risk dollars 

and the remainder is allocated to those elements where the desired probability level is in fact higher than the 

point estimate.  This is necessary if the child elements are to sum to the parent correctly.  It is unclear what 

should happen if the amount to be subtracted from the parent level risk dollars is higher than the parent level 

risk dollars. 

The standard deviation method in Section 3.6 performs the allocation to immediate children and from there 

to the next lower level and so on.  In our example for the needs approach, the process is applied to the lowest 

level WBS elements all at the same time.  The first step, however, is to develop the need adjusted for 

correlation to be used as the basis for the allocation.  The data required to perform the calculation is the point 

estimate, the simulation results for every WBS element at the probability of interest and the correlation 

matrix.  We can obtain the correlation matrix by extracting the simulation data and measuring the correlation 

between elements using the Excel CORREL function. 

The necessary data for the EMD phase of our example model is illustrated in Figure A-14.  It also shows 

how to apply Equation A-76 in Excel to generate the correlation adjusted need.  The formula in cell F9 is 

E9*MMULT(Q9:Y9,$E$9:$E$17).  This formula is written to facilitate copy/pasting it to cells F10:F17. 
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Figure A-14  Calculating Need and Correlation Adjusted Need 

The need allocation process is illustrated in Figure A-15. 

  

Figure A-15  The Need Allocation Process 

A.12.3 Comparing Three Allocation Methods 

Figure A-16 compares three methods:  Allocate by standard deviation, Allocate by standard deviation 

adjusted for correlation and the Needs method.  Figure A-16 is evidence that for this model, any of the 

approaches are reasonable.  Consequently, the simplest (Section 3.6) to implement is the recommended 

approach. 
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Figure A-16  Comparing Three Allocation Methods On 85% TY $K 

A.13 ENHANCED SCENARIO-BASED METHOD 

A.13.1 Overview, Approach and Assumptions 

eSBM is an alternative to the CISM approach.  Rather than building up risk and uncertainty element by 

element as in Monte Carlo simulation, eSBM instead shifts attention to the identification and quantification 

of what can go right and what can go wrong with an acquisition program from a high-level management 

perspective point of view.  For a detailed explanation of eSBM, see Reference 86. 

The scenario-based method is centered on articulating and costing a program’s risk scenarios. Risk scenarios 

are coherent stories or narratives about potential events that, if they occur, increase program cost beyond 

what was planned. eSBM is implemented in accordance to the steps in Figure A-17. 
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Figure A-17  eSBM Process and Implementation Steps 

The steps to eSBM are illustrated in Figure A-17 as follows: 

 Step 1: Develop eSBM Inputs: The Start Step is the input to the process. It is the program’s point 

estimate cost (PE). The point estimate cost is the cost that does not include allowances for reserve. 

The PE is the sum of the cost-element costs across the program’s work breakdown structure without 

adjustments for uncertainty. The PE is often developed from the program’s cost analysis 

requirements description (CARD).  In the Start Step, eSBM also requires inputs on the probability  

that PE will not be exceeded and the coefficient of variation (CV). 

The probability a program’s point estimate cost PE will not be exceeded is the value  such that  

P(Cost ≤ PE)=. It is anecdotally well understood a program’s PE usually faces higher, not lower, 

probabilities of being exceeded – especially in the early life cycle phases.  The interval 0.10 ≤  

≤0.50 expresses this anecdotal experience.  It implies a program’s PE will very probably experience 

growth instead of reduction. Unless there are special circumstances, a value for  from this interval 

should be selected for SBM/eSBM and a justification written for the choice. Yet, the question 

remains what value of  should be chosen?  With eSBM, ways to guide that choice are available 

from the analysis of program cost growth histories presented in Reference 86. 

The CV is the ratio of a probability distribution’s standard deviation to its mean.  The CV is a way to 

examine the variability of any distribution at plus or minus one standard deviation around its mean.  

Select an appropriate realistic, historically based, coefficient of variation for use in generating a 

probability distribution (Reference 86).  If future values of inflation are regarded as stochastic, then 

select then-year dollar CVs.  Otherwise; select base-year dollar CVs.  Likewise, select quantity-

adjusted or non-quantity-adjusted CVs according to whether or not potential changes in the numbers 

of baseline developmental and production units of a weapon system are regarded as falling within the 

purview of the cost estimate.  “Quantity-adjusted” is the usual selection in the context of executing 

risk and uncertainty analysis, and in producing S-curves. 

With values assessed for  and CV, the program’s cumulative cost probability distribution can then 

be derived. This distribution is used to view the probability level associated with the protect scenario 

cost PS, as well as probability levels associated with any other cost outcome along this distribution. 

 STEP 2: DEFINE PROTECT SCENARIO:  The next step in Figure A-17 is defining a protect 

scenario.  A protect scenario captures the cost impacts of major known risks to the program – those 

events the program must monitor and guard against occurring.  The protect scenario is not arbitrary, 

nor should it reflect extreme worst-case events.  It should reflect a possible program cost that, in the 

Input: Program’s 

Point Estimate Cost 

(PE)

Start

Derive Program’s Cumulative 

Probability Distribution From 

Selected PE and COD

Use this Distribution to 

View the Confidence 

Level of the PS Cost
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These steps are the same as the non-statistical SBM process

These steps are specific to the statistical SBM process

Inputs PE and the coefficient of variation (CV) are specific to the statistical SBM process

Statistical SBM
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judgment of the program, has an acceptable chance of not being exceeded. In practice, it is 

envisioned that management will converge on an “official” protect scenario after deliberations on the 

one initially defined.  This part of the process ensures all parties reach a consensus understanding of 

the program’s risks and how they are best described by the protect scenario. 

 STEP 3: COST THE PROTECT SCENARIO:  Once the protect scenario is established its cost is 

then estimated.  Denote this cost by PS. The amount of cost reserve dollars (CR) needed to protect 

program cost can be computed as the difference between the PS and the PE. Shown in Figure A-17, 

there may be additional refinements to the cost estimated for the protect scenario, based on 

management reviews and other considerations.  The process may be iterated until the reasonableness 

of the magnitude of the cost reserve dollars is accepted by management. 

The final step in Figure A-17 is a sensitivity analysis to identify critical drivers associated with the 

protect scenario and the program’s point estimate cost.  It is recommended that the sensitivity of the 

amount of reserve dollars, computed in the preceding step, be assessed with respect to variations in 

the parameters associated with these drivers. 

 STEPS 4, 5: DERIVE THE eSBM S-CURVE AND DETERMINE PROBABILITY LEVELS:  

With values assessed for  and CV, the program’s cumulative cost probability distribution can then 

be derived.  This distribution is used to view the probability level associated with the protect scenario 

cost PS, as well as probability levels associated with any other cost outcome along this distribution. 

 STEP 6: COST THE PROTECT SCENARIO:  The final step is sensitivity analyses on key 

assumptions or conditions expressed in the protect scenario(s), as well as uncertainties in values 

chosen for  and CV.  This allows a broad assessment of probability level variability, which includes 

determining a range of possible program cost outcomes for any specified probability level. 

A.13.2 eSBM Equations 

The following are the core equations for producing an eSBM cost risk analysis.  The following equations 

derive from the assumption that a program’s total cost is normally distributed and the point estimate (PE)   

falls within this distribution. Given PE, , and CV, then the mean and standard deviation of the program’s 

cost are given by the following: 

Equation A-77  eSBM Mean and Standard Deviation if the Program Cost Distribution is Normal 

( )

1 ( )

CV PE
PE z

z CV
  

  

( )

1 ( )

CV PE

z CV
 

  

Equation A-78  eSBM Mean and Standard Deviation if the Program Cost Distribution is Lognormal 
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a b
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where CV is the coefficient of variation, PE is the program’s point estimate cost, and z is the value such that   

P(Z≤z)=α where Z is the standard normal random variable. Values for z are available in look-up tables for 

the standard normal or from the Excel function z = Norm.S.Inv(percentile); e.g., z = 0.525 = 

Norm.S.Inv(0.70). 

With the values computed from the above equations, the normal or lognormal distribution function of the 

total cost is fully specified, along with the probability that the cost may take any particular outcome, such as 

the protect scenario cost PS. Reference 82 presents a numerical example that illustrates implementing the 

above eSBM lognormal equations 

A.13.3 eSBM Numerical Example 

Suppose the distribution function a program’s total cost is lognormal. Suppose the program’s point estimate 

cost is $100M and this was assessed to fall at the 25th percentile. Suppose the type and life cycle phase of 

the program is such that 30 percent variability in cost around the mean has been historically seen. Suppose 

the protect scenario was defined and determined to cost $145M. 

To compute the mean and standard deviation of the total cost distribution, use Equation A-78 as follows: 

2 2ln ln(1 ( ) ) ln(100) ( 0.6745) ln(1 (0.30) )a PE z CV       4.80317 

2 2ln(1 ( ) ) ln(1 (0.30) ) 0.29356b CV      

2 21 1
2 2

4.80317 (0.29356)
127.3

a b
e e
 

    ($M) 

2 2 22 ( 1) ( 1)a b b be e e      
2(0.29356)127.3 ( 1) 38.2e    ($M) 

 

To determine the probability level of the protect scenario ($145 $M) is equivalent to solving for zps in the 

equation a +  zps(b)=ln PS, giving: 

ln
PS

PS a
z

b


  

ln ln145 4.80317
0.59123

0.29356
PS

PS a
z

b

 
    

 Thus, we want α such that P(Z ≤ zps=0.59123)= α.  Values for α are available in Excel as follows. With  , 

enter into Excel: NORM.S.DIST(0.59123,TRUE); that is 

NORM.S.DIST(0.59123,TRUE) = 0.723 

Therefore, the $145M protect scenario cost falls at the 72nd percentile of the distribution. 

A.13.4 eSBM Summary 

eSBM encourages and emphasizes a careful and deliberative approach to cost-risk analysis. It requires the 

development of scenarios that represent the program’s “risk story” rather than a debate about what percentile 

to select. Time is best spent building the case arguments for how a confluence of risk events that form a risk 

scenario might drive the program to a particular percentile. This is where the debate and the analysis take 

focus. In summary, eSBM 

 Provides an analytic argument for deriving the amount of cost reserve needed to guard against well-

defined “scenarios” 
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 Brings the discussion of “scenarios” and their credibility to the decision-makers; this may be a 

meaningful topic to many decision makers 

 Allows percentiles (probability measures) to be designed into the approach with a minimum set of 

statistical assumptions 

 Allows percentiles (as well as the mean, median, variance, etc.) to be calculated algebraically in near-

real time within a simple spreadsheet environment (see worked example in Appendix A.13.3). 

 Avoids the requirement to develop probability distributions for all the uncertain variables in a cost 

model 

 Supports traceability and focuses attention on key risk events in the written scenarios that have the 

potential to drive cost higher than expected 

The strength of the eSBM approach will depend on the completeness of the risk identification process, the 

basis for the protect scenario point estimate, the basis for the assumed CV and a defendable way to identify 

where the point estimate falls in the distribution. 

A.14 OBLIGATIONS VS. EXPENDITURES 

Building ships, aircraft, or missiles is expensive and takes place over a considerable amount of time. 

Multiyear funds grant authority to spend money appropriated in one year over a period of years. This is the 

origin of outlay rates, which provide a profile of how money appropriated (obligated) for a program may be 

spent over time according to the type of program. Some appropriations, such as Military Pay, Civilian Pay, 

and Fuel, are assumed to be spent 100% within the year of appropriation. Other categories, such as ship 

acquisition, are allowed to be spent (pay an invoice) over a period of up to seven years. In this context, 

outlays rates are used to estimate the total dollars required to account for inflation.  Since budgets are 

expressed in obligations, cost estimates to support the budgeting process must be in terms of obligations. 

Further complicating the landscape is that: 

 Appropriated funds may be available to be obligated (put on contract) for several years.  Thus 

appropriations are often referred to as one, two or three (or more) year money 

 Contractors collect costs as they are accrued (as work is performed).  This forms the basis for 

contract cost reporting to the DoD.  These accruals represent actual or estimated unpaid liabilities for 

the DoD.  However, the accruals may be quite different from the contractor vouchers submitted to 

and the funds (outlays) paid by the DoD. 

 Incremental payments (expenditures) may or may not match the actual work performed and will often 

lag the reported work, especially if there is a dispute over what work has been performed 

The Comptroller of the Office of the Secretary of Defense (OSD) releases inflation guidance (Reference 90) 

between January and March of each year.  This guidance includes the outlay rates (profile) for each DoD 

appropriation.  Table A-16 contains some of the outlay rates published in February 2012.  The Navy 

RDT&E and Weapons rates are used in the example model for this handbook. 
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Table A-16  FY13  President’s Budget Outlay Rates  

 

 

The outlay rates can be used to develop an implied expenditure profile from the estimated obligation profile.  

Table A-17 demonstrates this by applying the Navy Weapons outlay rates to each year of the example 

estimate Then Year (TY) results.  Note that the dollars of the implied expenditures are in the year in which 

they were expended (same year dollars, SY) and they sum identically to the TY result. To obtain a constant 

year total, each year of the expenditure would be adjusted by the raw inflation (not the weighted) to convert 

from each year to a specific base year. 

The Army performs this calculation different from the Navy and Air Force.  The method the Army uses 

assumes that the outlay rates are applied then the obligation profile is expressed in constant dollar terms. The 

method the Navy and Air Force use assumes that the outlays are applied to the then year obligation profile. 

Table A-17  Converting an Obligation Profile to an Expenditure Profile  

 

The Table A-17 example should not be confused with the contractor plan to perform the work.  The example 

is an estimate of how the government may pay (outlay) for the project, not how the work will be performed. 

A.15 CISM BEST PRACTICE CHECKLIST 

The methods and processes in this handbook are designed to be tool independent.  The best practice checklist 

provided here will include some tool specific recommendations based on the behaviors of the latest versions 

of the tools at the time. 

 Data 

o Uncertainty parameters should be data-driven rather than subjective 

o Distribution shapes should be selected based on data rather than subjective 

Total FY 2019 FY 2020 FY 2021 FY 2022 FY 2023

Prod Obligations TY$ $179,872 $39,472 $44,411 $43,924 $43,936 $8,129

Navy WPN Outlay SY$ Total FY 2019 FY 2020 FY 2021 FY 2022 FY 2023 FY 2024 FY 2025 FY 2026 FY 2027 FY 2028 FY 2029

Implied Expenditures $179,872 $7,894 $21,513 $33,654 $39,570 $35,045 $22,967 $11,363 $4,937 $1,985 $822 $122

2019 Obligation Outlay $7,894 $12,631 $10,657 $4,737 $2,171 $789 $592

2020 Obligation Outlay $8,882 $14,212 $11,991 $5,329 $2,443 $888 $666

2021 Obligation Outlay $8,785 $14,056 $11,859 $5,271 $2,416 $878 $659

2022 Obligation Outlay $8,787 $14,060 $11,863 $5,272 $2,416 $879 $659

2023 Obligation Outlay $1,626 $2,601 $2,195 $975 $447 $163 $122
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 Simulation Preferences 

o Simulation settings such as type (Monte Carlo vs. Latin Hypercube), sampling, random seed, 

correlation on/off and others may not be saved with the model file.  These and similar settings 

will have an impact on the simulation results. Establish a standard for these settings and verify 

they are correct in the model. 

o Ensure correlation is enabled 

o Agencies are encouraged to publish recommended settings for each tool that is used 

 Defined Distributions 

o Try to define all uncertainty distributions in a single location within the model. This will simplify 

review and the application of correlation. 

o Create logical, concise names for all defined distributions to facilitate building of correlation 

matrices and understanding reports   Consider standardizing naming conventions such as: Prefix 

to identify phase, UpperLowerCase to make names easier to read, suffix to identify type (Rate, 

Wgt, Factor, Etc).  Examples: EMDeSLOC, ProdAirFrameWgt, OSLabRate. 

o In the absence of better information, use lognormal where the point estimate is the median and the 

upper bound is the 85% as the default.  If the distribution is known to be left skewed, use 

betaPERT as the default.  Refer to Table 2-2 for guidance on when to use other distributions 

o Treat subjective bounds as low and high at 15/85% unless there is evidence to do otherwise.  

Adjust for skew 

o Truncate distributions at zero unless there is evidence to do otherwise 

o Apply uncertainty to the CIC relationship as a whole rather than its parts (T1 and slope) 

o Use lognormal with the median as the point estimate and 85% value to define 3
rd

 party tool 

uncertainty results in your own model if more precise methods are unavailable 

o Distribution parameter values should be visible on the spreadsheet and linked to the distribution 

definition 

o Use Crystal Ball Cell preferences to ensure assumption comments are enabled 

o Ensure Crystal Ball (cell preferences) and @RISK (RiskStatic) leave cell contents alone, rather 

than replacing them with the mean or median 

 Correlation 

o Measure correlation present in the model first then determine what should be applied 

o Create a few large correlation matrices rather than many small ones 

o Use a minimum of 0.3 as the default 

o Consider negative correlations where it makes the most sense 

 CISM Model Features 

o Be able to easily switch off the schedule uncertainty, risk register and correlation in order to 

investigate the impacts of these key aspects of the model.  Additionally, in order to move cost and 

uncertainty data to a FICSM model, it will be necessary to generate CISM results with schedule 

and risk register contributions removed.  
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 Forecast cells 

o Follow the same naming conventions as used to name uncertainty distributions 

o Report the simulation results (trials, mean, standard deviation, coefficient of variation, 

probabilities every 5%) on the same sheet, ideally just to the right of the forecast 

o Perform a convergence analysis to verify the number of trials required to develop a stable 

result 

 Reports 

o Use multiple methods (Pareto, Tornado, Sensitivity, etc.) to identify cost, duration and 

uncertainty drivers.  These reports are powerful for exploring the model within the estimating 

team, but should only be in backup to support a brief description of the drivers to decision 

makers. 

o Tornado charts should be prepared based on TY$ 

o Sensitivity charts based on measuring the correlation between the target total output and input 

distributions should be run with correlation enabled and again with correlation disabled 

o S-curves should be in TY$ and report CV, 50%, mean and a high probability value.  X-axis range 

should be fixed when comparing two or more S-curves.  When comparing dissimilar costs, x-axis 

should be conditioned to a specific CV (0.3 by default) with the mean in the center and bounds 

+/- a given number of standard deviations (3 by default). 

 Terminology 

o Uncertainty distributions not risk distributions 

o SMEs provide low/high not min/max 

o We are applying risk AND uncertainty (where risk is the risk register) 

o Risk register contains both risks AND opportunities 

o Probability is read off the S-curve, not confidence level 

o Probability adjustment not risk dollars 

o Cost contributors (WBS elements) vs cost drivers (input variables) 
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A.16 GLOSSARY 

 

ACAT Acquisition Category 

ACE Automated Cost Estimator 

ACEIT Automated Cost Estimating Integrated Tools 

AFCAA Air Force Cost Analysis Agency 

BY Base Year 

CARD Cost Analysis Requirements Description 

CB Crystal Ball 

CDF Cumulative Distribution Function 

CER Cost Estimating Relationship 

CGF Cost Growth Factor 

CGPF Cost Growth Potential Factor 

CIC Cost Improvement Curve (also known as a “learning curve”) 

CISM Cost Informed by Schedule Method 

COCOMO Constructive Cost Model 

CR Cost Reserve 

CRUH Cost Risk and Uncertainty Handbook 

CSRUH Cost/Schedule Risk and Uncertainty Handbook 

CV Coefficient of Variation 

df Degrees of freedom 

ECO Engineering Change Order 

eSBM Enhanced Scenario Based Method 

EVM Earned Value Management 

FY Fiscal Year 

GERM Generalized Error Regression Model 

IC CAIG Intelligence Community Cost Analysis Improvement Group 

IRLS Iteratively Reweighted Least Squares 

LOLS Ordinary Least Squares, Log Space 

MDA Missile Defense Agency  

MPE Minimum Percentage Error 

MSE Mean Squared Error 

MUPE Minimum Unbiased Percentage Error 
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OLS Ordinary Least Squares 

NCCA Naval Center for Cost Analysis 

PDF Probability Density Function 

PE Point Estimate 

PF Ping Factor 

PI Prediction Interval 

PS Protect Scenario 

QAIV Quantity as an Independent Variable 

SBM Scenario-Based Method 

SE Standard Error 

SEE Standard Error of the Estimate 

SEPM Systems Engineering and Program Management 

SME Subject Matter Expert 

SRA Schedule Risk Analysis 

Std Dev Standard Deviation 

SW Software 

TY Then Year 

WBS Work Breakdown Structure 

ZMPE Zero Bias Minimum Percent Error 
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APPENDIX B  FULLY INTEGRATED COST AND SCHEDULE METHOD 

B.1 OVERVIEW 

Cost, schedule and risk assessments traditionally have been performed by separate teams of professionals.  In 

recent years, it has become more common for the cost analyst to report a risk-adjusted result as a budget 

recommendation, rather than a point estimate.  However, it appears that cost uncertainty models routinely 

fail to account for two key components of an integrated estimate: 

 Associate a risk-adjusted cost result with an associated schedule (that is, the risk-adjusted cost result 

is too often forced into point estimate schedule)  

 Capture the impact of the risk register 

A fully integrated cost and schedule method (FICSM) is a disciplined, systematic and repeatable process to 

integrate three critical pieces of information: cost uncertainty, schedule uncertainty, and the risk register. For 

a variation on the approach described here, see Reference 76. 

B.2 SCHEDULE NETWORK AND DEFINITIONS 

Before embarking on the process of building a FICSM model, we will review some key aspects of a schedule 

model.  Cost analysts work with models where the total of interest is the sum of all the subordinate tasks.  

The units are dollars, a tangible commodity that can be spent or held back.  A schedule is not a list of 

activities where the durations sum.  It is a network of activities arranged in sequence and parallel where the 

commodity is time.  Time cannot be saved and redistributed later.  A parent task duration is not the sum of its 

sub-tasks, but equal to the longest of the various paths that define its completion. 

A task, project, or program schedule is constructed from a number of specific individual activities, 

interrelated among themselves in complicated ways and is called a network.  In general, each activity in the 

schedule will (or should) have: 

 Predecessors: A task whose start or finish date determines the start or finish date of its successor 

 Successors: A task whose start or finish date is driven by its predecessor task(s) 

A schedule is a listing of activities, each with predecessors, a duration and successors.  Other common 

terminology includes: 

 Baseline: At a specific point in time, saving all the task start and finish dates to serve as the reference 

point for tracking progress and as the basis for calculating EVM metrics.  Tools generally provide a 

means for saving multiple baselines as the project progresses. 

 Critical Path:  Longest slack-less path to completion 

o Microsoft Project lists every task in the schedule that has zero free float.  Some of these tasks can 

slip without affecting the overall project duration. 

o Primavera Risk Analysis only reports those tasks with zero free float on the longest path to the 

end of the project (there is an option to report the same way that MS Project does) 

 Free Slack (float):  Where a task has more than one immediate predecessor, free slack (also called 

free float) is the amount of time an activity can slip without impacting its successor start 

 Hammock: A special type of task within a schedule that is dependent on external dates for both its 

start and finish dates and, ultimately, its duration 
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 Hard Constraint:  A constraint that prevents the calculated schedule from being pushed beyond a 

specific date for the task.  Examples of hard constraints include: Must-Finish-On, Must-Start-On, 

Start-No-Later-Than, and Finish-No-Later-Than. These should be avoided and for the simulation, 

hard constraints should be removed. 

 Integrated Master Plan (IMP):  An event-based, top level plan consisting of a hierarchy of program 

events, with each event being supported by specific accomplishments, and each accomplishment 

associated with specific acceptance criteria to be satisfied for its completion 

 Integrated Master Schedule (IMS): Flows directly from the IMP, creating the task and calendar-

based schedule that illustrates the interrelationships among events, accomplishments, criteria, and 

tasks 

 Lead/Lag: A lead will cause the successor to start or finish earlier and lag causes the successor to 

start or finish later than it otherwise could.  It is a discouraged practice because it tends to be misused.  

Where a lag is required, the better practice is to create a task called “margin” to replicate the intent of 

the lag. 

 Merge Bias:  This occurs when two or more uncertain, parallel paths of activities merge at one 

milestone.  The effect is that the expected completion date for the milestone, in this situation, will be 

later than the expected completion of the individual paths leading up to it.  The number of merging 

parallel paths and the level of overlap between, and degree of correlation between them (lower 

correlation between uncertain durations produces greater merge bias) produce an increasing merge 

bias impact to the schedule. 

 Milestone: An event, phase gate or key accomplishment with zero day duration 

 Relationships: These identify how tasks or activities are linked together: Finish to Start is by far the 

most common and the best practice.  Start to Start is also commonly used, but it tends to make it 

harder to understand the logic.  Finish to Finish is known to be useful, but is discouraged because 

predecessor logic can become hidden. 

 Summary: A higher level roll-up of related detailed tasks 

 Total Slack (float):  Amount of time an activity can slip without impacting the project end date 

 Soft Constraint: A constraint that does not prevent the schedule from being changed based upon its 

dependencies.  Examples of soft constraints include: As-Soon-As-Possible, Start-No-Earler-Than, 

and Finish-No-Earlier-Than.  As-Soon-As-Possible (ASAP) is the default in most scheduling 

applications.  

 Planning Package:  A higher level representation of the WBS activities for cost account visibility 

 Task: An activity with duration that is commonly used to represent work items 

 Time Independent (TI)
17

: elements whose costs are not impacted by the duration of the task they are 

loaded against (e.g., material cost) 

 Time Dependent (TD): elements whose costs are a function of the duration of the task which they 

are loaded against (e.g., staff cost) 

 Work Package:  Lowest level of the WBS where both the cost and the duration can be reliably 

estimated 

                                                 
17

 TI and TD are also known as “time-fixed” and “time-variable” costs respectively. 
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B.3 OVERVIEW OF THE FICSM MODELING PROCESS 

FICSM begins with a model of the schedule logic.  This serves as the backbone for the integrated analysis. 

Cost, risks and uncertainty are mapped into the schedule network logic to assess impacts.  In general, using 

the project/program IMS may be too challenging.  An IMS may be too big and complex.  Additionally, there 

may be network logic or constraints in an IMS that are unsuitable for the uncertainty simulation to run 

properly. For example “Must finish on” constraints may be used to generate a suitable IMS, but must be 

removed to perform a simulation.  The general “unhealthiness” of the IMS may make it challenging to use it 

for a simulation model.  

A FICSM appropriate schedule must be created from available data (including the program IMS) and this is 

typically referred to as an “analysis schedule”.  Key elements of an analysis schedule provide the following: 

 Captures the major work-flows of the project IMS 

 Provides insight into major cross-dependencies within or across management responsibility 

boundaries  

 Creates a solid framework to capture cost / schedule uncertainties and discrete risk events  

 Structured around management/ budget responsibility  

 Aligns the effort and schedule to the cost/budget 

 Identifies key tasks that support major deliverables/ tracking items  

 Detailed IMS step-by-step work items and task flows are combined while maintaining critical path 

logic 

 Has traceability and transparency to the more detailed IMS and passes all schedule modeling best 

practice and health checks 

Figure B-1 is an example of a simple analysis schedule where uncertainty is applied to the task durations.  

While triangular distributions are shown, the analyst may use any type of distribution suitable to model the 

duration uncertainty. 

 

Figure B-1  Simple Schedule Network With Uncertain Task Durations 

The next step is to assign time independent (TI) and time dependent (TD) costs to each of the activities.  

Figure B-2  illustrates mapping of uncertain TI and TD costs to each activity.  The final activity only has a 

TI cost associated with it.  The previous activities have both TI and TD cost components. 
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It is a common practice to combine similar activities together to assign the TD cost.  This is known as a 

summary hammock task. For instance, a schedule network may contain several specific activities that 

together are related to a single WBS element cost estimate.  The hammock task is tied to the beginning of the 

first activity in the series and the end of the last.  There could be a large complicated network of sequential 

and parallel activities in between.  The TD cost needs to be expressed in dollars per unit time so, as the 

activity duration changes, so does the total cost for the activity.  There are several considerations to keep in 

mind when building uncertainty into TD costs: 

 Hammock tasks need to be added to the schedule, without changing the behavior of the schedule, in 

order to assign the TD cost 

 The basis for the TD cost uncertainty, transferred to the FICSM model, may have already captured 

some degree of duration uncertainty 

 

Figure B-2  Simple Schedule Network With Mapped TI and TD Costs 

Finally, it is necessary to map risk register events into the network.  These events will have a cost and/or 

schedule impact on one or more tasks if the risk is realized.  Figure B-3  illustrates how a risk register item is 

embedded into the network.  Note that, as constructed in Figure B-3 (there are multiple ways to do so): 

 The event will have no impact on the schedule or cost if it does not occur 

 The probability of occurrence defines how often in the simulation this event occurs 

 An additional, uncertain TI cost is realized if this event occurs 

 Since it is captured within the TD hammock, when the event occurs, the duration that it adds to this 

sequence of events will result in higher total TD cost 

 This particular implementation does not affect the already-defined TD burn rate, only the duration 

over which the TD rate is applied 
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Figure B-3  Simple Schedule Network With A Risk Register Event Included 

It is generally easier to map cost model results to a schedule model rather than replicating schedule network 

logic in a cost model.  However, schedule models (tools) are generally populated with throughputs, that is 

they don’t allow equations to estimate the cost of one task based on the cost of another task or the technical 

characteristics of the task.  Consequently the CISM model is still necessary as it can be used as the source for 

the cost and cost uncertainties that must be mapped to the schedule.  Mapping cost estimate results to a 

schedule model is simplified by: 

 Unifying cost (often product-based) and schedule (often task-based) work breakdown structures 

 Specifying Time Dependent and Time Independent costs and their uncertainty separately 

 Defining how the TI or TD cost is phased over the task duration 

Uncertainty should be applied in a consistent manner across the entire model and then correlation must be 

considered. 

B.4 BUILDING A FICSM MODEL 

B.4.1 A Consolidated View of the Process 

The following steps provide a high-level process for incorporating cost uncertainty, schedule uncertainty and 

the risk register into a fully integrated model.  Figure B-4 illustrates a tool independent overview of the 

FICSM process.  There are many tools available to perform this modeling and analysis.  Unlike the tools to 

perform cost simulation, they are not as mature and there are many subtle but highly significant differences 

in how these tools implement the process.  We selected one of them to demonstrate the process.  While it 

may be evident from the images used which tool was selected, this handbook does not directly identify it and 

leaves it to the analyst to make a selection. 
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Figure B-4  The FICSM Process 

B.4.2 Starting the Process: Collect Schedule Data 

Whether building a schedule from scratch or condensing an IMS into a useable analysis schedule, it is 

important to first gather key pieces of information that will aid in the overall understanding of the project.  

Many times when building a new schedule the first instinct is to open Microsoft Project, or other scheduling 

tool, and start entering data.  This is rarely a good idea, and instead leads to non-integrated pieces of data that 

don’t tell the whole cohesive story of the project from beginning to end.  Table B-1 identifies some key 

pieces of information for the example model. 

Table B-1  Typical High Level Schedule Data 
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B.4.3 Creating an Analysis Schedule Suitable for the FICSM Process 

Ideally, FICSM will be based on the IMS for the project.  Many analysts choosing to build a FICSM model 

will quickly find out that neither the IMP nor IMS has been developed.  The schedule for the project may be 

nothing more than a few bullets on a single slide.  On the other end of the spectrum will be projects in 

execution that have fully developed IMP and an ever changing IMS with a huge number of interrelated 

activities rendering it problematic for use in the FICSM process.  In both situations, the FICSM analyst may 

have no choice but to build a schedule that adequately captures the anticipated workflow and activity 

interrelationships.  This step begins by defining the key elements of the overall plan as discussed in the 

previous section.  Further discussion of the IMP and IMS can be found in Appendix A.1.10.  Also, 

Reference 93 documents lessons learned from building an analysis schedule in the NASA environment. 

 

.  

Figure B-5  Example Model Integrated Master Plan 

After a high-level understanding of the project and a project plan from start to finish are achieved (should 

look something like Figure B-5), there are a few different approaches to take in building an analysis 

schedule.  If the WBS elements are self-contained, meaning they do not rely on activities from other WBS 

elements to be predecessors to activities within their process, then building the schedule by WBS may be 

appropriate.  If the activities within the WBS elements are interconnected with activities from others, it may 

be better to build the analysis schedule organized around activities.  However, when building an analysis 

schedule from a cost model, it is easiest to use the WBS as the basis for building the schedule. 

Having identified the key activities for the schedule, the next step is to develop the logical relationships.  

Logical relationships between activities identify whether they are to be accomplished in sequence or in 

parallel. A sequence of activities is a serial path along which one activity is completed after another. 

Activities can also be accomplished in parallel. A logic relationship linking a predecessor and successor 

activity can take one of three forms: finish-to-start (F-S), start-to-start (S-S), and finish-to-finish (F-F).  

Additionally, there can be leads or lags built into these relationships. 

F-S relationships are preferred because it is intuitive, it is common for work to be accomplished serially, it is 

easier to trace and they clearly indicate to management the work flow. S-S and F-F relationships, in contrast, 

imply parallel or concurrent work. S–S and F–F relationships represent a valid technique for modeling 

overlapping activities and may be more predominant in schedules that have not yet evolved to a detailed 

level. 
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In summary, an analysis schedule: 

 is not an IMS or a detailed schedule   

 is not a detailed step by step description of the detailed activity flow  

 has traceability and transparency to more detailed IMS and other schedule products 

 has the objective to enable an integrated cost and schedule modeling and simulation environment that 

is structured around management/ budget responsibility 

 displays major work-flows of a project 

 identifies work required to support major deliverable / tracking items  

 allows linkage of budgeted work effort to schedule scope 

 facilitates alignment with EVM generated data 

 provides insight into major cross dependencies within or across management responsibility 

boundaries  

 creates a framework for incorporating cost / schedule uncertainties and risk register events  

Figure B-6 illustrates how the example CISM model compares to an analysis schedule developed in MS 

Project to support a FICSM analysis.  Starting from the cost WBS, the analysis schedule differs by: 

 adding the ability to make the start date uncertain 

 including milestone dates  

 consolidating level of effort tasks  

 rearranging to make more sense in the schedule linkages 

 requiring a lot more detail as we will see in the following examples with arrows 

 

  Figure B-6  Compare the Example Cost WBS to the Analysis Schedule 
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B.4.4 Estimating Activity Durations 

Estimating the duration for the PES will set the stage for the duration uncertainties to be entered later.  There 

are several approaches for estimating the activity duration, and each should be based upon data analysis 

whenever possible: 

 Mean Duration: A common approach is to examine historical tasks and use the average as the point 

estimate 

 Three Point Estimate:  Another common approach is to identify the minimum, most-likely and 

maximum duration for the activity and use the most-likely as the point estimate.  When obtained 

subjectively, the adjustment for skew as discussed in Section 2.5.4 should be considered. 

Other terms are used like “the most realistic” duration, which presents problems when determining how to 

apply uncertainty.  Most realistic is not the same as the mode or the mean.  It is some other interpretation 

adding another level of subjectivity. 

The duration estimate should take into account the nature of the work and the resources needed to complete 

the activity.  The AACEI Recommended Practice 32-04: Determining Activity Durations suggest the 

following guidelines for estimating activity durations:  

 Duration = Quantity of work / work units per time period.  Quantity of work is a function of the 

definition or scope of the activity. Work units per time period are commonly referred to as the 

production rate. 

 Duration is typically specified in rounded continuous working time periods in the unit common to the 

activity, e.g. hours, days, weeks, months, years, etc. Generally, durations are rounded up to the next 

whole unit, even when the estimated duration is less than ½ a work unit (e.g., if estimated duration 

calculates to 60.25 work days, it is rounded up to 61 work days). 

 There are some activities which need to be measured in calendar time periods rather than working 

time periods 

 Durations should be estimated using an analytical and systematic method 

 The basis of activity duration estimates should be identified as a part of the overall schedule 

documentation 

B.4.5 Capturing the Impact of the “Standing Army” Using Hammock Tasks 

Level of effort (LOE) tasks incur a steady expenditure rate that is expected to be in operation over a period 

time.  If the task ends early, it will cost less.  If the task runs longer, it will cost more.  Project management 

and systems engineering were modeled in this manner given that it is reasonable to expect the need for these 

services while the project is in execution.  This gives rise to the concept of “standing armies” which are 

resources that cannot be terminated due to delays in other areas of the project.  Figure B-7 illustrates how 

these tasks are implemented in the analysis schedule.  They each have a subordinate milestone start and 

finish that are linked to the associated activities that define the start and the end of the EMD phase.  A 

similar construct is created in production.  By doing this, the cost/day for these resources can be assigned to 

the hammock task and produce a total task cost that is sensitive to the duration of all those tasks that will 

define the EMD critical path. 

 



 Joint Agency Cost Schedule Risk and Uncertainty Handbook 

  B-10 

 

Figure B-7  Implementing Hammock Tasks in the Example Model 

B.4.6 Build the Schedule and Perform a Health Check 

After identifying the logic relationships and the durations, it is time to build the schedule in the scheduling 

software.  There will be choices to make when organizing the tasks.  Some analysts like all the milestones to 

be prominent at the top of the schedule so they are easy to find.  However, this makes it hard to visualize the 

linkages.  Embedding the milestones directly after its last predecessor makes the linkage easier to read (see 

PDR and CDR in Figure B-7) but this could create confusion when looking at the list.  A third option is to 

group the milestones as shown in Figure B-8.  Figure B-8 also illustrates the kind of tasks and the linkages 

that need to be built into the model. 

Once the schedule is built, it should be checked against the Defense Contract Management Agency (DCMA) 

14-point check.  A number of statistics must be calculated before starting the check. These statistics are: 

 Total Tasks: All the tasks except tasks that represent summary, subproject, level of efforts, zero 

duration, or milestones 

 Complete Tasks: Tasks among the "Total Tasks" that have 100% completion and with an actual 

finish date before the status date 

 Incomplete Tasks: Tasks among the "Total Tasks" that do not have 100% completion and with an 

actual finish date before the status date 

 Baseline Count: Tasks among the "Total Tasks" that should have been completed before the status 

date in the original baseline schedule 
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Figure B-8  Example Analysis Schedule 

After identifying and calculating the previous statistics the checks can be performed.  There are third party 

tools that specialize in performing these types of checks.  A brief summary of the 14-point checks is: 

 Logic: less than 5% incomplete tasks with missing logic links 

 Leads: no incomplete tasks with a lead (negative lag) in predecessor relationships 

 Lags: less than 5% incomplete tasks with lags in predecessor logic relationships 

 Relationship Types: incomplete tasks containing each type of logic link.  At least 90% should be 

Finish-Start.  Start-Finish should be as close to zero as possible. 

 Hard Constraints: less than 5% of incomplete tasks contain hard constraints in use (such as Must-

Finish-On, Must-Start-On, Start-No-Later-Than, and Finish-No-Later-Than) 

 High Float: less than 5% of incomplete tasks with total float greater than 44 working days (2 

months) 

 Negative Float: no incomplete task with total float less than 0 working days 

 High Duration:  less than 5% of incomplete tasks with a baseline duration greater than 44 working 

days (2 months) 

 Invalid Dates:  no incomplete tasks that have a forecast start/finish date prior to the IMS status date, 

or have an actual start/finish date beyond the IMS status date 

 Resources: all tasks with durations greater than zero have dollars or hours assigned 

 Missed Tasks: Less than 5% of activities that had a scheduled finish date before the status date but 

did not finish or are forecast to finish after the baseline finish date.  This check is important because it 

shows how the updated schedule is in compliance with the baseline schedule. 
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 Critical Path Test:  Tests the integrity of the overall network logic and, in particular, the critical 

path.  It is one of the two “trip wires” that are required by the OSD (Office of Secretary of Defense). 

The "critical path test" is performed by adding an intentional delay (600 working days) to the 

remaining duration of a critical task and then checking  to see if the project completion date is 

delayed by a proportional duration (600 working days). By adding such a delay, any missing 

predecessor or successor will lead to a mismatch between the project overall delay and the intentional 

one. The "critical path test" will be passed if there is a match between the project completion delay 

and the intentional added duration. 

 Critical Path Length Index (CPLI):  Used to assess if the project finish date will be real or not. It is 

one of the two “trip wires” that are required by the OSD. The CPLI is calculated by adding the length 

of the critical path to the total float of the latest activity and dividing the sum by the length of the 

critical path. For the CPLI to be acceptable, its value should be more than 100% 

 Baseline Execution Index (BEI):  An IMS-based metric that calculates the efficiency with which 

tasks have been accomplished when measured against the baseline tasks. If the contractor completes 

more tasks than planned, then the BEI will be higher than 1.00 reflecting a higher task throughput 

than planned. A BEI less than 0.95 should be considered a flag and requires additional investigation. 

This test computes the ratio of all of the tasks that have been completed versus the tasks that should 

have been completed in the period between the Baseline Schedule and the current schedule. 

There are other sources for schedule health check guidance.  For instance Appendix III of the GAO Schedule 

Assessment Guide (Reference 82) provides five pages of standard quantitative measurements for assessing 

schedule health.  The NASA Schedule Management Handbook (Reference 69) states that schedule 

credibility is determined by monitoring key indicators within the IMS that reflect both good and poor 

characteristics of schedule structure and maintenance. Examples of key indicators within the logic network 

that must be monitored include the following: number of missing predecessors and successors, invalid task 

constraints, omission of task status, improper status on future tasks, logic ties to/from summary tasks, 

inaccurate logic ties, and improperly reflecting tasks as milestones.  These indicators are based on standard 

rules of logic network development utilized in critical path method (CPM) scheduling techniques. has 5 

pages of health checks 

B.5 LOADING THE SCHEDULE WITH COST 

B.5.1 Strategy to Load Cost Data 

There are several decisions to make regarding the approach to cost loading the schedule model.  Ideally, the 

CISM and FICSM point estimate cost and durations match.  Also, the total cost uncertainty for both the 

CISM and FICSM should approximately match before schedule uncertainty and risk register influences are 

added to the FICSM model.  If a CISM model is used as the source for the data, the documentation and basis 

for much of the FICSM model is already available.  To construct the example FICSM model, we used the 

following process: 

 Basis for the FICSM point estimate:  

o Cost:  We chose to use the point estimate from the CISM model that is based upon the PES 

o Schedule:  To be consistent with the point estimate cost, the PES durations derived from the 

CISM model are used 

 Mapping cost to a FICSM model:  

o Mapping WBS to activities: The approach for performing this mapping (often one WBS element 

to many activities) is determined on a WBS element by WBS element basis 
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o Mapping CISM cost to TI and TD: We chose to use the CISM model as guidance for assigning 

these costs 

 Mapping CISM cost uncertainty to a FICSM Model:  

o Run the CISM with the risk register disabled 

o Review selected histogram results from the CISM model to determine distribution shape.  

Develop consistent approach for determining the shape parameters.  Enter the parameters as a 

percent of the point estimate to preserve CV. 

o Match the CISM model correlation for cost uncertainties in order to match (or get close) at the 

total level before schedule uncertainty and the risk register is applied 

 Assign duration uncertainties: Similar process to cost 

 Apply the risk register 

 Apply correlation 

 Perform a health check: Before running the simulation, check for issues with the model.  This is a 

more important and more complex process than a similar check for a CISM model. 

 Run the model and develop reports 

B.5.2 Collect Cost Data 

A properly developed and documented CISM model is a good source of the cost and cost uncertainty 

information required for populating the FICSM model.  However, it is important that the CISM model is 

configured to permit schedule uncertainty and risk register elements to be disabled. Use this capability to 

generate results from CISM model for use as inputs to the FICSM model. 

Table B-2 compares key results from the CISM example model.  These are not the allocated risk dollar 

results that would be used to propose a budget.  Rather, these are the statistical results direct from the 

simulation for cost uncertainty only.  The TY statistical results are shown for reference, but would not be 

used to populate the FICSM model. 
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Table B-2  Example CISM Model Estimate Risk and Uncertainty Statistical Results 

 

B.5.3 Mapping cost to a FICSM model 

There are two steps in mapping the point estimate from a CISM model to FICSM.  Before extracting data 

from the CISM model, make sure that the point estimate is based upon the PES.  The costs from CISM need 

to be mapped to the appropriate activities and then divided into TI and TD values.  Table B-3 illustrates both 

steps in a single template.  There are many ways to arrive at the factors - the only guidance offered is to 

establish a consistent approach that is defendable, repeatable and well documented. 

Point Estimate Program Estimate Results From Program Estimate Results From

(xx%) = Complete CISM Model  No Schedule Uncertainty or Risk Register

WBS Probability of PE Mean Std Dev CV 50% 85% Mean Std Dev CV 50% 85%

Missile System TY$ $ 276,893 (15%) $365,333 $78,884 0.216 $353,524 $439,934 $338,615 $62,843 0.186 $330,567 $400,359

    EMD TY$ $ 88,102 (16%) $140,417 $52,654 0.375 $130,228 $189,083 $119,952 $36,159 0.301 $113,205 $153,228

    Production & Deployment TY$ $ 188,792 (19%) $224,916 $37,027 0.165 $220,985 $261,913 $218,663 $34,869 0.159 $214,633 $254,116

* DETAILED ESTIMATE PE Mean Std Dev CV 50% 85% Mean Std Dev CV 50% 85%

Missile System $ 246,836 (15%) $325,183 $70,260 0.216 $314,740 $391,724 $302,070 $56,779 0.188 $294,754 $357,505

    Engineering and Manufacturing Dev $ 83,539 (17%) $130,683 $47,692 0.365 $121,567 $174,317 $112,971 $34,025 0.301 $106,567 $144,172

        Air Vehicle $ 14,944 (29%) $28,615 $21,080 0.737 $22,954 $44,749 $23,886 $14,921 0.625 $20,138 $36,195

            Design & Development $ 12,000 (33%) $24,380 $20,409 0.837 $18,752 $39,874 $19,795 $14,287 0.722 $16,053 $31,387

            Prototypes $ 2,944 (23%) $4,235 $1,516 0.358 $3,975 $5,805 $4,091 $1,452 0.355 $3,837 $5,597

        Software $ 31,500 (41%) $44,497 $23,620 0.531 $39,641 $65,970 $40,302 $22,164 0.550 $35,269 $60,480

        System Engineering $ 17,500 (17%) $27,113 $8,293 0.306 $25,693 $35,496 $22,659 $5,078 0.224 $21,861 $28,639

        Program Management $ 15,000 (26%) $20,528 $5,395 0.263 $19,672 $26,158 $17,155 $2,813 0.164 $16,776 $20,436

        System Test and Evaluation $ 1,766 (9%) $3,654 $1,683 0.461 $3,289 $5,267 $3,529 $1,614 0.457 $3,194 $5,084

        Training $ 897 (20%) $2,038 $1,551 0.761 $1,618 $3,215 $1,701 $1,104 0.649 $1,413 $2,581

        Data $ 1,196 (20%) $2,714 $2,054 0.757 $2,156 $4,278 $2,266 $1,469 0.648 $1,893 $3,456

        Peculiar Support Equipment $ 736 (9%) $1,524 $703 0.461 $1,379 $2,209 $1,472 $675 0.459 $1,331 $2,135

$0

    Production & Deployment $ 163,297 (19%) $194,499 $31,984 0.164 $191,119 $226,478 $189,100 $30,121 0.159 $185,619 $219,735

        Air Vehicle $ 104,826 (23%) $127,291 $25,142 0.198 $124,490 $152,834 $122,955 $23,622 0.192 $120,399 $146,789

            Airframe $ 21,651 (35%) $25,477 $7,692 0.302 $24,570 $33,903 $25,477 $7,692 0.302 $24,570 $33,903

            Propulsion $ 21,849 (32%) $24,056 $4,541 0.189 $23,617 $28,319 $24,056 $4,541 0.189 $23,617 $28,319

            Guidance $ 27,810 (27%) $37,322 $10,274 0.275 $35,949 $48,294 $32,986 $7,143 0.217 $32,058 $41,295

            Payload $ 17,246 (31%) $19,607 $4,195 0.214 $19,204 $23,913 $19,607 $4,195 0.214 $19,204 $23,913

            Air Vehicle IAT&C $ 16,269 (41%) $20,830 $11,501 0.552 $18,270 $31,108 $20,830 $11,501 0.552 $18,270 $31,108

        System Engineering $ 12,000 (40%) $12,442 $1,363 0.110 $12,347 $13,990 $12,442 $1,363 0.110 $12,347 $13,990

        Program Management $ 10,000 (40%) $10,369 $1,136 0.110 $10,289 $11,658 $10,369 $1,136 0.110 $10,289 $11,658

        System Test and Evaluation $ 5,000 (33%) $5,369 $690 0.128 $5,296 $6,162 $5,369 $690 0.128 $5,296 $6,162

        Training $ 4,193 (10%) $6,587 $1,972 0.299 $6,295 $8,602 $6,364 $1,885 0.296 $6,061 $8,323

        Data $ 4,193 (10%) $6,036 $1,475 0.244 $5,855 $7,529 $5,830 $1,396 0.239 $5,653 $7,221

        Peculiar Support Equipment $ 7,634 (50%) $7,634 $2,039 0.267 $7,635 $9,747 $7,634 $2,039 0.267 $7,635 $9,747

        Initial Spares and Repair Parts $ 15,451 (37%) $18,771 $6,090 0.324 $17,821 $24,795 $18,137 $5,839 0.322 $17,257 $23,930
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Table B-3  Mapping CISM Costs to a FICSM Model 

 

B.5.4 Mapping CISM Cost Uncertainty to a FICSM Model 

At this point, we have created a schedule using point estimate durations (no duration uncertainty) and 

mapped the point estimate costs from the CISM model to the FICSM model.  It is recommended that cost 

uncertainty be applied before applying duration uncertainty or the risk register.  In that way, we can set a 

goal to have the FICSM cost uncertainty match, at the total level, the CISM cost uncertainty when schedule 

and the risk register are turned off.  This provides a point of departure where the models matched under 

similar conditions.  It will be the last time any such match will be possible. 

In general, CERs cannot be used in FICSM models to estimate TI or TD costs.  Almost every FICSM tool 

requires TI and TD costs to be entered as throughputs.  This makes it necessary to create a cost risk and 

uncertainty model in order to obtain the convolved cost uncertainty elements for the FICSM model.  When 

using a CISM model, it is important to turn off schedule and risk register uncertainty in order to obtain the 

baseline uncertainty distributions suitable for entry into the FICSM model.  It is recommended that you begin 

by creating histograms of the associated elements.  In most cases, the results will look like the left image of 

Figure B-9.  Generally the mean and standard deviation will be sufficient to replicate the distribution in the 

FICSM model.  However, since we have to apply one WBS element distribution to several activities, it is 

recommended that the distribution parameters be reduced to factors of the point estimate. 

 

Figure B-9  Example CISM Cost Histograms 

Using this approach allows us to apply the same relative uncertainty to all activities, TI and TD.  The 

problem with this approach is that the sum of TI and TD cost uncertainty will not equal the original total cost 

uncertainty for that CISM element.  There are a few ways to address this issue: 

CISM WBS Element
Point 

Estimate
FICSM Activity Name

CISM 

Result
Factor

FICSM 

PE
TI% TD% TI$ TD$

Design & Development $12,000    EMD HW Des & Dev $12,000 $12,000

      HW Sys Des 10% $1,200 0% 100% $0 $1,200

      HW Initial Des 20% $2,400 0% 100% $0 $2,400

      HW Detailed Des 50% $6,000 0% 100% $0 $6,000

      HW Final Des 20% $2,400 0% 100% $0 $2,400

Software $31,500    EMD Software $31,500 $31,500 100%

SW Sys Des 10% $3,150 100% 0% $3,150 $0

SW Initial Des 20% $6,300 100% 0% $6,300 $0

SW Detailed Des 40% $12,600 100% 0% $12,600 $0

SW RR#1 EMD Detailed Des Complications $0

SW Des Refinements 30% $9,450 100% 0% $9,450 $0

CISM Data
Point 

Estimate
FICSM Activity Name

CISM 

Result
Factor

FICSM 

PE
TI% TD% TI$ TD$

        Air Vehicle $105,839    Prod Mfg $105,838 $105,838

            Airframe $21,860 Air Vehicle Minus IATC $89,412

            Propulsion $22,060       Procure Materials 40% $35,765 100% 0% $35,765 $0

            Guidance $28,079 Air Vehicle Manufacturing 60% $53,647 90% 10% $48,282 $5,365

            Payload $17,413 AV RR#2 Prod Guidance Sys Mfg Problem

            Air Vehicle IATC $16,426    IAT&C $16,426 100% $16,426 100% 0% $16,426 $0
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 Find the correlation required using trial and error to make the sum of TI and TD uncertainty match 

the total.  This is not a satisfactory method as it interferes with correlation to anything else in the 

FICSM model. 

 Apply the scaled parameters, measure the correlation in the CISM model as a whole and apply it to 

the FISCM cost elements 

This recommended approach should achieve our goal of matching the cost uncertainty in the FICSM with the 

CISM model (before schedule uncertainty is applied in FICSM).  As evidence that such a goal is feasible we 

offer Figure B-10 where a CISM estimate of our example model (in Crystal Ball, @RISK or ACE) is 

compared to a FICSM estimate in the Joint Analysis of Cost and Schedule (JACS, an ACEIT tool). 

 

Figure B-10  Comparing Only Cost Uncertainty Between a CISM and FISM Model 

B.5.5 Assign the Schedule Uncertainty 

To this point, point estimate durations have been entered.  A source is required to define the duration 

uncertainty.  For our example we will draw our information from the CISM model.  There are two sources of 

duration uncertainty in the example model, each modeled using a triangular distribution as illustrated in 

Figure B-11.  It is important to ensure that the duration uncertainties obtained from the CISM model do not 

include the impact of the risk register as they will be added later. 

 

Figure B-11  Example Model EMD Duration Uncertainties 

In our case, the EMD PES is the mode of the duration uncertainty.  Often, however, the PES is in fact 

estimated as an average (mean), A common mistake is to treat it as the mode anyway.  Unless the triangular 
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distribution is symmetrical, the mean will not be the same as the mode.  It is, however, simple to calculate 

the mode of a triangular distribution if the minimum, mean and the maximum are known: Mode = 3*Mean – 

Min – Max.  See Appendix A.6 for the mathematics of the triangular and other common distributions. 

Correctly obtaining the Production duration uncertainty from the CISM (or similar) model requires a 

complete understanding of the source model.  In our case, the model combines the Production start date 

uncertainty with the production rate uncertainty.  Figure B-12 illustrates the combined effect. This is not the 

data we should use to model Production duration uncertainty in FICSM. 

  

Figure B-12  Production Duration Uncertainty With the Influence of EMD 

Production duration uncertainty was not developed in the example CISM model delivered with this 

handbook (as directed).  However, in a previous version we explored introducing production duration 

uncertainty by creating a production rate variable.  Dividing the point estimate production total quantity by a 

the point estimate duration for production gave a production steady state (SS) rate.  Using an uncertain SS 

rate (left image of Figure B-13) we could have the model generate the uncertain duration (12 * 

TotalQty/ProdSSRate).  The image on the right of Figure B-13 is the result.  This is the image we used to 

assign duration uncertainty to Production activities in the FICSM model.  Note that dividing by a triangular 

distribution does not result in a triangular distribution.  This is a situation where an empirical distribution 

may be appropriate (see Section 2.4.3.6). 

 

Figure B-13  Converting Production Rate Uncertainty to Duration Uncertainty 



 Joint Agency Cost Schedule Risk and Uncertainty Handbook 

  B-18 

B.5.6 Apply the Risk Register 

It is common practice to create the risk register in a FICSM model as a single list to facilitate cross checking 

with the risk management team.  An alternative is to weave the risk register (RR) items directly into the 

schedule model structure.  This has two advantages: linkages are easier to see and elements affected by the 

RR item are more clearly visible. We used this approach in the example model, but either approach is 

acceptable.  Two common methods for modeling the RR event include: 

 Discrete events: A single RR event may impact many activities.  Each impact affects a specific 

activity and its successors.  The event impacts are built directly into the network and assigned a point 

estimate of zero for cost and duration.  If the event is triggered, the event takes on an uncertain cost 

and/or duration.  Modeling risk events in this way is straight forward.  Modeling cost opportunities is 

slightly complicated since uncertainties are negative numbers. In CISM models, one can simply 

model the uncertainty as positive and subtract it from the element in question.  Functional 

relationships tend not to be available in FICSM models as they are schedule tool based.  Modeling 

schedule opportunities requires some effort as the affected activity needs to be broken into multiple 

segments.  Most FICSM tools handle risk events easily.  Few, if any, provide a simple way to 

implement opportunities in this fashion.  

 Risk Driver:  This popular method allows a single event to trigger the application of uncertain 

factors to one or more activities.  It can be looked at as a different way to apply uncertainty.  Using a 

risk event has the advantage of making it easy to address both risks and opportunities.  Its 

disadvantage is that tools allowing this method only permit a single factor that may be applied to 

many activities (albeit a different one for duration, TD and TI cost).  Justifying that the event will 

have the identical impact on a variety of activities may be troublesome to defend.  Nevertheless, it is 

widely used and defined in detail in Reference 79 and 94.  

For our example CISM and FICSM model we used the discrete event method as shown in Figure B-14. 

 

Figure B-14  Inserting a Risk Register Event into the Schedule Network 

This particular RR event adds duration to the EMD phase.  In the CISM model, this RR event influenced the 

EMD duration variable which in turn, was applied to all EMD WBS elements.  It is not that simple in a 

schedule model.  But there is also more flexibility.  Every activity that precedes the RR event is unaffected 

when it occurs.  The events that immediately follow are not affected either since it is set up with F-S logic.  

The event adds cost and duration to software development as a total.  Other activities like System 

Engineering and Project Management will stretch since they are linked to the start and finish of software.  

Take care not to double count risks. 

B.5.7 The Impact of Applied Correlation on a Schedule Network 

Cost models are built on the premise that the total cost is the sum of the lower-level costs.  Schedule 

networks are built on the premise that the total duration is based on the longest path through the lower-level 
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activities.  The total of a summary level in a cost model is the sum of the immediate subordinates in the 

WBS.  The duration of summary task in a schedule, however, is the maximum duration of all the subordinate 

tasks, not the sum.  There is no simple analytical solution for calculating the mean or standard deviation in 

this situation.  The table in Figure B-15 emulates a schedule where the total is a summary task with five 

subordinate activities; all five durations are uncertain and are running in parallel.  The total (summary task) 

is calculated by using the MAX( ) function in Excel.  The mean and standard deviation are obtained through 

a simulation.  In the table on the left, the activity duration uncertainties are independent of each other.  The 

table on the right illustrates the impact of applying correlation.  In a cost model, where elements sum, 

applying positive correlation across lower-level elements causes the variation of the parent level to increase 

and has little or no effect on the parent mean.  As shown in the table to the right, the standard deviation does 

increase with correlation in a schedule model.  However, the mean actually got noticeably smaller. 

   

Figure B-15  Impact of Correlation on Parallel Activities 

 

B.5.8 Apply Correlation 

Correlation was applied across the FICSM cost elements in Appendix B.5.4 as a first, not final application.  

Now that all the risk and uncertainty has been applied, it is time to revisit correlation.  There are some 

interesting aspects of the model to consider. 

 Duration and TD Cost:  When at least some of the cost is time dependent, we recommend that 

correlation between cost and duration be avoided unless there is compelling reason to do otherwise.  

For instance, if there is evidence that as duration changes, so should the cost per unit duration (the 

cost rate, e.g., dollars/day) then correlation between them may be appropriate. 

 TI and TD Costs: Unless there is compelling reason to do otherwise, it is recommended that TI and 

TD elements be correlated in a single matrix 

 By Phase:  The analyst should carefully consider whether correlation should be applied within a each 

phase of the project rather than across all phases.  In the example model, EMD elements were 

correlated with each other as were Production (rather than correlating EMD elements with 

Production). 

B.5.9 FICSM Model Health Check 

The model is complete.  But before running the simulation, it is essential to perform at least some validation 

checks.  We already performed the DCMA checks on the schedule (see Appendix B.4.6).  At this point we 

need to revisit these checks plus others to verify uncertainty specifications.  Most FICSM tools will provide 

for this step and it should not be skipped.  The health check tests criteria can be grouped into 10 categories: 

 Schedule Software: Check for schedule software issues (e.g. No status date defined) 

No Correlation Parameters Simulation Analytical

Total is the max
Std 

Dev
Min Max Mean

Std 

Dev

Total 100 159.61 26.69

Lognormal 100 40 100.00 40.00

Triangular 100 75 200 125.00 27.00

BetaPert 100 75 200 112.50 21.65

Normal 100 35 100.00 35.00

Uniform 100 75 200 137.50 36.09

0.3 Correlation Parameters Simulation Analytical

Total is the max
Std 

Dev
Min Max Mean

Std 

Dev

Total 100 153.50 30.63

Lognormal 100 40 100.00 39.98

Triangular 100 75 200 125.00 27.00

BetaPert 100 75 200 112.50 21.65

Normal 100 35 100.00 35.01

Uniform 100 75 200 137.50 36.09
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 Conflict: Check Actual Start Dates or Actual Finish Dates do not conflict with the project Status 

Date 

 Linkage and Logic: Check task linkage (e.g. Task with no predecessors) 

 Structural: Check the structure of the tasks to ensure validity (e.g. milestone should have 0 duration) 

 Constraint: Review activities for constraints on Start and/or Finish Dates 

 Status: Check status date against task parameters (start, finish, % complete, etc.) 

 Cost Loading: Check the logic and syntax of TI and TD costs loaded onto activities 

 Uncertainty: Check syntax of uncertainty applied to task resources (TI cost, TD cost, and duration) 

 Risk Register Specification: Check the logic and syntax of discrete risk events in the schedule 

 Syntax Error: Syntax check on various FICSM inputs (e.g., max is less than mode) 

Every FICSM tool provides some measure of health checking over and above the DCMA checks.  By way of 

an example, the Health Check report from one tool is provided.  It is divided into three sections to assist the 

analyst in finding and fixing the errors:  Summary, Issue Counts, and Issue List. Generally the tools will 

provide feedback in a series of reports similar to those shown in Table B-4 and Table B-5.  A final report is 

not shown that would direct the user to the specific task and error.  While it is best practice to clear all errors, 

it is common to ignore many of the minor issues flagged by the software. 

Table B-4  Example Health Check Report 

  

Report Date 05 Jan 2013

Project Name: CSRUH Analysis Schedule MSP2010 rev8 21Dec2012_w_shortnames.mpp

Schedule Status
Description
Current Start

Current Finish

Estimated Workdays Remaining

Is this schedule is linked to other schedules?

Resource Loaded (Y/N)

Satus Date

Task and Milestone Count     (Note: excludes summary tasks)

Description

Total Tasks and Milestones

Completed Tasks and Milestones

To Go Tasks and Milestones

Tasks with Time-Independent (TI) Cost Specified

Tasks with Time-Dependent (TD) Cost Specified

Tasks and Milestones with Estimated Duration

Tasks and Milestones Without Predecessors*

Tasks and Milestones Without Successors*

Summaries with Logic Ties

Constraints (other than ASAP)*

* These counts exclude summary and started/completed tasks

1

13

0

1

3%

33%

0%

3%

15

20

% of Total

0%

100%

38%

50%

01 Dec 2013

01 Dec 2022

2584

N

Count

40

0%

0

40

0

N

05 Jan 2013

Current

Critical JCL Issues
Description

Improper Specification

Actual Finish after Status Date

Actual Start after Status Date

Actual Finish Task with Uncertainty

Summary Task with Successor

Summary Task with Predecessor

Tasks with Zero (0) Duration Containing Cost specification

TD Cost and no Spending Profile

TI Cost and no Spending Profile

Tasks marked as Milestones with Cost Specification

Risk Missing Uncertainty Declaration

Risk Missing Prob of Occurrence Specification

Risk with Prob of Occurrence <0

Risk with Prob of Occurrence >1

Risk with Relative Duration Uncertainty

Risk with Relative Cost Uncertainty

Risk with TD Cost Specification

0 0%

0 0%

0 0%

0 0%

0 0%

0 0%

0 0%

Count % of Total

0 N/A

0 0%

0 0%

0 0%

0 0%

0 0%

0 0%

0 0%

0 0%

0 0%
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Table B-5  Example Health Check Issue Counts Report 

 

 

B.6 TYPICAL FICSM MODEL REPORTS 

B.6.1 Overview 

FICSM models are rich in reports.  There are so many, it is easy to get lost in the wide array of report options 

and their many variations.  It is also easy to forget that the cost from a FICSM model most often represents 

the “as expended” rather than “as obligated” estimate to be consistent with the schedule.  There are a few 

ways to approach this disconnect. 

 Convert to TY:   Extract the FISCM phased results to develop an as expended profile.  Use raw 

inflation indices to inflate to the current year and sum the total to arrive at a single total in TY dollars 

that are obligated at the beginning of the phase. This becomes more complicated if there are to be 

multiple obligations through any specific phase.  The schedule would have to be re-worked to ensure 

there is an as expended string of activities associated with each planned obligation.  

 Convert to Obligation:  There are some presentations in the public domain that propose various 

methods to convert an expenditure profile to an obligation profile such as Reference 35 

 Build an Obligation Schedule:  Instead of an expenditure schedule, build one based on obligations 

directly.  This is often done in cost estimating.  The problem with this option is that most schedules 

are not created this way. 

Breakdown of Schedule Issues by Category

Count% of Total* Count % of Total*

Project 1 3% 0 0%

Conflict (potential or actual) 0 0% 0 0%

Linkage and Logic 14 35% 0 0%

Structural 0 0% 27 68%

Constraint 1 3% 1 3%

Status 0 0% 0 0%

Cost Loading 1 3% 1 3%

Uncertainty Specification 0 0% 1 3%

Risk Specification 0 0% 0 0%

Syntax Error 0 0% 0 0%

Uncategorized 0 0% 0 0%

Total 17 30
* These percentages may exceed 100% due to multiple issues reported on single task

Description
Warning Info

Issue Category Severity Count Tasks

No Status Date Defined Project Warning 1 -1

Constraint Defined Constraint Info 1 3

Task With Soft Constraint Constraint Warning 1 3

Task With No Predecessors Linkage Warning 1 3

Short Total Float Structural Info 19 3,4,5,8,9,10,13,14,15,17,18,19,20,43,45,47,50,63,71

Task Without Correlation Uncertainty Info 1 4

Long Total Float Structural Info 8 11,21,23,24,25,26,60,62

Task With Uncertainty Missing TD Cost Cost Loading Info 1 21

Task With No Successors Linkage Warning 13 27,30,33,37,40,51,54,57,62,63,65,68,71

Hammock Without TD Cost Cost Loading Warning 1 33
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At the time of this report, virtually every FICSM tool has ignored the implementation of inflation.  The 

assumption is that all costs are entered in a specific constant year (base year).  This is how we loaded the 

example FICSM model, therefore we will apply the first approach. 

The next most common aspect of the model that is ignored is the number of trials (iterations) required to 

converge.  For the CISM model, 7,000 trials were required for EMD and 5,000 for Production (see Section 

3.4.3 for details).  Figure B-16 illustrates that for this example FICSM model, EMD required 5,000 trials 

while only 1,500 trial were necessary for Production.  We will use 1500 trials to generate the Production 

reports from the example FICSM model. 

 

Figure B-16  Trials Required for a Converged FICSM Cost Result 

B.6.2 FICSM Project Level Reports 

A primary reason to build the FICSM model is to identify the relationship between cost and schedule.  

Consequently one of the first reports analysts will examine is the scatterplot where cost is on the y-axis and 

either duration or finish date is on the x-axis.  Each point on Figure B-17 represents the result of a specific 

trial (iteration).  In this case, they represent the 1,500 results from the simulation.  The cross hairs on the left 

image are set to the point estimate cost and schedule.  0.8% of the trial results fall under the point estimate 

cost and before the point estimate finish date.  This is known as the Joint Confidence Level (JCL) for the 

project.  The yellow line is the 50% frontier, meaning if the cross hairs are centered anywhere on the yellow 

line, the JCL will be 50%.  In the image on the right, the cross hairs are set to 60% for the date and 60% for 

cost.  For this example project, this results in a JCL of 43.4%.  These colorful charts have been in use for 

over five years, but are seldom used when reporting to management.  They are useful for the analyst to 

validate simulation behavior; visualize the JCL; and discuss within an estimating team’s technical review.  

But there are many other FICSM charts that are more useful for reporting to management. 
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Figure B-17  Scatterplot of EMD Finish Date vs. Cost 

While it may seem unlikely to find close agreement amongst the various FICSM-like tools on the market, 

Booz Allen and Hamilton, in support of a study for NASA Glenn Research Center, released Figure B-18 that 

compares three different FICSM-like models.  As Figure B-18 shows, reasonably close comparison between 

tools is possible.  

 

Figure B-18  Different Model Compared Across Three Tools 

A GANTT
18

 chart depicts progress in relation to time and is used in planning and tracking a project. It shows 

activities as a series of bars and illustrates information such as work complete, durations, milestones and 

linkages.  There are several variations on the GANTT that are possible from FICSM model results.  Figure 

B-19 illustrates the PES in the upper left.  The lower left shows a point estimate based on using the activity 

mean durations.  But the more interesting charts are on the right.  The top right illustrates the uncertainty of 

the activity start and the bottom right shows the potential finish dates. 

                                                 
18

 Named after Henry Laurence Gantt (1861-1919) 
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Figure B-19  GANTT Charts From the FICSM Example Model  

In addition to GANNT charts, FICSM models provide cost uncertainty by year as illustrated in Figure B-20.  

The image on the left shows the uncertainty by year, with the cumulative on the right.  The PE and the mean 

cost are also shown for reference. 

   

 Figure B-20  Cost Uncertainty by Year in TY $K 

The final project level chart we will introduce is called an “overlay” chart.  This chart is an effort to put a 

variety of information on a single chart.  Figure B-21 illustrates the concept.  The planned dates for various 

milestones are plotted against the cost expended to that point (yellow points).  The various clusters are the 

simulation results for these key events in the project.  Additionally, the risk register events are plotted where 

the size is a relative measure of impact and the color a relative measure of probability of occurrence (green 
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for low, red for high).  This chart provides a high level, overall view of how much the project might cost, 

how long the project may take and when the risk register events are expected. 

 

Figure B-21  Overlay Chart 

B.6.3 FISCM Sensitivity Reports 

For sensitivity analysis, there are a wide range of reports to consider.  Every FICSM tool and every 

discussion of FICSM like reports (see Reference 94 as an example) will have a variation of the following 

types of reports:  

 Cost Sensitivity: Correlation between task cost and total program cost; see Figure B-22 

 Duration Sensitivity: Correlation between task duration and total program duration; see Figure B-22 
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Figure B-22  FICSM Cost and Duration Sensitivity 

 Duration to Cost Sensitivity: Correlation between task duration and total program cost; see Figure 

B-23 

 Criticality Index: Probability that a specific task lies on the schedule’s critical path; see Figure B-23 

 

 Figure B-23  FICSM Duration Sensitivity to Cost and Criticality Index 

 Cruciality Index: the product of the criticality index and the selected sensitivity.  For instance, 

cruciality index for duration would be the product of a task’s probability on the critical path times the 

correlation of the task’s duration to the total project duration.  In Figure B-23 SW Initial Design and 

SW System Design are about the same when considering the duration uncertainty’s impact on the 

total EMD cost uncertainty.  However, SW System Design is not on the critical path as often (49%) 

as SW Initial Design (54%).  SW Initial design is more crucial than SW System Design. 

 Risk Register Criticality: the probability that a risk register event will be on the critical path if it 

occurs. Figure B-24 shows that the Software risk register item is on the critical path 92% of the time 

when the risk is realized for the example model (left image).  On the other hand, the Guidance item 

almost never is on the critical path.  The right image (provided by NASA) is another example of this 

report from a project with multiple risk register elements. 
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Figure B-24  FICSM Discrete Risk Criticality 

 Sensitivity Index: The task cruciality times the ratio of the task standard deviation to the total project 

standard deviation.  Some tools may use the variance ratio rather than the standard deviation ratio. 

 Cost Contributors: Figure B-25 is a special form of the Pareto chart.  Two forms of this chart are 

shown.  The top chart sorts task durations relative to the point estimate and the bottom sorts based 

upon duration the task start exceeds the point estimate.  In each case the sort is by their 95% value. 

These charts provide a compact visual illustration of the additional duration required to reach the next 

percentile.  Note that if the top chart in Figure B-25 was sorted by the 70% value, EMD SW Detailed 

Design would be first rather than second. The chart helps identify those tasks with the greatest 

potential overrun on duration. 

 

Figure B-25  EMD Task Duration and Task Start Date Relative to Baseline 

The first three reports (cost, duration and duration to cost sensitivity) are important products of the FISCM 

process because they identify the cost and schedule uncertainty drivers. But there is much dispute on how to 

perform the measurement.  Measuring the correlation between a target activity and every other activity in the 
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network could yield spurious results (see Section 4.1.6 for details on this issue).  Creating these charts with 

applied correlation enabled and disabled will help identify drivers that in fact are not influencing the total of 

interest.  As an alternative, many analysts have resorted to turning uncertainty off one activity at a time to 

directly measure the impact of each uncertain task cost or duration on the total of interest. 

There are many variations on FICSM driver charts, the ones shown here are just a few.  These and other 

reports are only possible from a FICSM model.  They provide significantly more information than the CISM 

approach.  Industries such as oil and gas have used these tools for over a decade.  DoD and NASA, on the 

other hand, are just getting started. 

B.7 FICSM CONCLUDING COMMENTS 

FICSM is a cohesive integration of cost uncertainty, schedule uncertainty, and the risk register.  This 

appendix described one approach for incorporating cost uncertainty, schedule uncertainty, and the risk 

register into a fully integrated model.  This FICSM integrated framework delivers a rich array of reports that 

can be used show the impacts of risk events to a project as well as highlight the relationship between cost 

and schedule uncertainty, establish projected cost and schedule requirements at various probability levels, 

and to identify programmatic cost and schedule uncertainty drivers.  Finally, FICSM is the only way to 

estimate the probability of achieving both cost and schedule targets: the Joint Confidence Level (JCL). 




